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Chapter 1

Introduction

This document is a user's guide for capabilities that are not considered mature but are available in
Sierra/SolidMechanics (Sierra/SM) for early adopters. The determination of maturity of a capabil-
ity is determined by many aspects: having regression and verification level testing, documentation
of functionality and syntax, and usability are such considerations. Capabilities in this document
are lacking in one or many of these aspects.

15



16



Chapter 2

Representative Volume Elements

This chapter describes the Representative Volume Element (RVE) capability, which is a multi-scale
technique that uses a separate finite element model to represent the material response at a point.

The use of representative volume elements (RVEs) is a multi-scale technique in which the material
response at element integration points in a reference mesh is computed using an RVE that is itself
discretized with finite elements. RVEs are typically used to represent local, periodic material
inhomogeneities such as fibers or random micro structures to avoid the requirement of a global
mesh with elements small enough to capture local material phenomena.

In the current implementation of RVEs, periodic boundary conditions are applied to each RVE
representing the deformation of a parent element and the stresses are computed in the elements of
the RVE. These stresses are then volume-averaged over the RVE and the resulting homogenized
stresses are passed back to the parent element.

This chapter explains how to use the RVE capability. Section 2.1 gives a detailed description of
how RVEs are incorporated into an analysis. Details of the mesh requirements are delineated in
Section 2.2 and the commands needed in an input file are described in Section 2.3.

Known Issue: The capability to use RVEs with reference mesh multi integration
point elements is still under development and should be used with caution.
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2.1 RVE Processing

The use of the RVE capability requires two regions, each with its own mesh file. One region
processes the reference mesh and the other processes all the RVEs. The commands used in the input
file for the reference mesh region are the same as any other Sierra/SM region with the exception
that a special RVE material model is used for every element block that uses an RVE. The RVE
region is similar to an ordinary region. The only differences are that an RVE region has a line
command for defining the RVEs' relationship to parent elements in the reference region and has
restrictions on the use of boundary conditions.

The processing of an RVE essentially replaces the constitutive model of the parent element in the
reference mesh. The steps followed at each iteration/time step of the reference mesh during an
analysis using RVEs are as follows:

1. Internal force algorithm is called in the reference region to compute rate of deformation.

2. Each RVE gets the rate of deformation from its integration point on its parent element in the
reference region.

3. The rate of deformation is applied to each RVE as a periodic boundary condition using
prescribed velocity.

4. The RVE region is solved to obtain the stress in each element of each RVE.

5. The stresses in the elements of an RVE are volume-averaged over the RVE.

6. Each RVE passes its homogenized or volume-averaged stress tensor back to its integration
point of its parent element in the reference mesh.

7. The reference region computes internal force again. Element blocks whose elements have
associated RVEs do not compute a stress; they simply use the stress passed to them from
their RVE.

18



2.2 Mesh Requirements

Two mesh files, one for the reference region and one for the RVE region, are required for an RVE
analysis. Figure 2.1 shows an example of the two meshes. The reference mesh of a bar with
six single integration point elements is shown on the upper left. On the lower right is the mesh
for the RVE region containing six RVEs, one for each element (since the elements have only one
integration point) of the reference region. In this case, the first five RVEs each consist of two
element blocks and the last RVE has four.

Reference Region!

Mesh

RVE Region Mesh

Figure 2.1: Example of meshes for RVE analysis

In general, each RVE should be a cube with any discretization the user desires. All RVEs must
be aligned with the global x, y, and z axes. For stress computations, these axes are rotated into a
local coordinate system, which can be specified on the reference mesh elements if these reference
elements are uniform gradient hexahedra. In other words, if a local coordinate system is specified
on a reference mesh uniform gradient element, the RVE global axes will be rotated internally in
Sierra/SM to align with the local system on the associated parent element. So the global X axis for
an RVE is actually the local X' axis in the parent element.

Additional mesh requirements apply if the mesh does not match across opposing surfaces of the
RVE. In this case, the RVE must include a block of membrane elements on the exterior surfaces
with matching discretization on opposing surfaces (+x/-x, +y/-y, +z/-z). In order to minimize the
effects of this membrane layer on the RVE response, it should be made as thin as possible. This
membrane layer then must be tied to the underlying non matching RVE surfaces.

The RVE mesh must contain sidesets or node sets on each surface of every RVE. The RVE may be
enclosed with one sideset that spans all six surfaces of the curb, or the user may specify individual
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sidesets or node sets on each face. These sidesets/node sets are used to apply the periodic boundary
conditions on the RVE. Sierra/SM generates the boundary conditions internally so the user does
not have to include them in the input file. However, this assumes that the sidesets/node sets exist in
the mesh file numbered in a specified order. If individual sidesets/node sets are used on each face
of the RVE, the six sidesets/node sets must be numbered consecutively, starting with the positive-x
face, followed by the negative-x face, positive-y face, negative-y face, positive-z face, and ending
with the negative-z face. The beginning sideset id (for the positive-x face) is set by the user in the
input file.
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2.3 Input Commands

There are several input commands that are relevant to RVEs. In the reference region, these com-
mands include a special RVE material model and commands to define and use a local coordinate
system along which an associated RVE will be aligned. In addition to the reference region, an
RVE region is needed using the BEGIN RVE REGION command block. The RVE region com-
mand block uses the same nested commands as any other Sierra/SM region (with some restrictions
as explained in this section) and an additional line command that relates the RVEs to their parent
elements in the reference region.

2.3.1 RVE Material Model

In an RVE analysis, any elements of the reference mesh that use an RVE must use the RVE material
model. This model is defined similar to other material models as described in the User's Guide but
uses the RVE keyword on the BEGIN PARAMETERS FOR MODEL command line as follows:

BEGIN MATERIAL (string>mat_name

DENSITY = (real>density_value

BEGIN PARAMETERS FOR MODEL RVE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = (real>poissons_ratio

END PARAMETERS FOR MODEL RVE

END [MATERIAL (string>mat_name]

Currently, the RVE material model tells the reference element not to perform a constitutive evalua-
tion but to instead accept the stress tensor obtained from computation on an RVE. However, the use
of an RVE material model still requires the input of Young's modulus and Poissons ratio. These
values may be used for time step estimation and hourglass computations, even though they are not
used in a constitutive evaluation.

Element blocks in the RVE region can use any material model that is supported in Sierra/SM other
than RVE.

2.3.2 Embedded Coordinate System

The finite element model of an element block in the reference mesh that uses RVEs can use an em-
bedded coordinate system to orient the RVE relative to the reference element, if the reference ele-
ments are uniform gradient hexes. A coordinate system is defined in the sierra scope as described
in the User's Guide. A local coordinate system is then associated with an element block through
the use of a COORDINATE SYSTEM command line within a BEGIN SOLID SECTION command
block.

BEGIN SOLID SECTION (string>section name

21



COORDINATE SYSTEM = <string>coord_sys_name

#

END [SOLID SECTION <string>section_name]

The string coord_sys_name must be a name associated in the input file with a BEGIN
COORDINATE SYSTEM command block in the sierra scope. This coordinate system will then be
used on all elements of a block associated with a BEGIN PARAMETERS FOR BLOCK command
block that includes the command line specifying this solid section.

Known Issue: Currently, the rotation of RVEs to a local element block coordinate
system only works with uniform gradient hexes in the reference mesh.

2.3.3 RVE Region

A representative volume element (RVE) region must be a quasistatic region specified with the
RVE keyword in the BEGIN RVE REGION command line. The RVE region uses the same block
commands and line commands as any other quasistatic region with the addition of line commands
that define which element blocks of the reference region are associated with RVEs. There are also
some restrictions on boundary conditions as described in Section 2.3.6.

BEGIN RVE REGION <string>rve_region name

#

# Definition of RVEs

ELEMENTS <integer>elem_i:<integer>elem_j

<integer>num intg_pts per_elem

BLOCKS <integer>blk_i:<integer>blk_j

SURFACE1NODESET <integer> start_id INCREMENT

<integer> k

#

# Boundary Conditions

#

# Results Output Definition

#

# Solver Definition

#

END [RVE REGION <string>rve_region_name]

2.3.4 Definition of RVEs

One or more ELEMENTS command lines are used to associate elements of the reference region
mesh with RVEs in the RVE region. In the

ELEMENTS <integer>elem_i:<integer>elem_j

<integer>num_intg_pts_per_elem
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BLOCKS <integer>blk_i:<integer>blk_j

SURFACE1NODESET <integer>start_id INCREMENT

<integer>incr

command line, elements numbered elern_i through elem_j of the reference mesh and their
num intg pts per elem integration points will be associated with RVEs (for a total number
of RVEs equal to (elem_j - elem_i + 1) * num_intg_pts_per_elem), and each RVE will
consist of blk_i - blk_j + 1 element blocks. Each integration point will be associated with
a separate RVE. The block IDs of the first RVE must be blk_i through blk_j and subsequent
RVEs (if elem_j is greater than elem_i or num_intg_pts_per_elem is greater than 1) must
have consecutively increasing numbers for their block IDs.

Similarly start_id gives the surface_id of the first RVE if a single, encompassing surface is
used, or the first surface_id or nodelist_id of the first RVE (the positive x surface as ex-
plained in Section 2.2) if six individual sidesets/nodeset are used. The remaining surfaces (node-
sets) of the first RVE and all the surfaces of the following RVEs must be consecutively numbered
following start_id in the mesh file as explained in Section 2.2.

The increment value incr indicates the number of sidesets present on the exterior of the RVEs.
This is used to determine how to increment the IDs of the sidesets from one RVE to the next and to
determine how to prescribe periodic boundary conditions on the RVE. The increment can have a
value of either one or six. A value of one indicates that each RVE has one sideset that encompasses
all six faces, while a value of six specifies that six sidesets or nodesets are present, one on each
face. Nodesets are not allowed for the case where incr is one.

The following example shows the use of the ELEMENTS command line:

elements 1:5 1 blocks 1:2 surface 7 increment 6

elements 6:6 1 blocks 11:14 nodeset 15 increment 6

These commands generate the RVEs shown in Figure 2.1.

The first ELEMENTS command line specifies that elements with element IDs 1 through 5 in the
parent region mesh each have one integration point and that each integration point has an RVE
with two element blocks. The RVE associated with the integration point of element 1 of the parent
region will have two element blocks starting with block_id of 1 and ending with a block_id
of 2. Subsequent RVEs will have consecutively numbered element blocks. For example: the
integration point of parent element 2 will be associated with an RVE that consists of element
blocks 3 and 4 in the RVE region, the integration point of parent element 3 will be associated with
the RVE that has element blocks 5 and 6, etc. Again, this is the case for the first five elements of
the parent region mesh. The keyword SURFACE specifies that all the periodic boundary conditions
generated by the code for the RVEs for elements 1 to 5 will use sidesets in the RVE region mesh.
These sidesets will start with id 7 for the positive-x face of the RVE associated with parent element
1 and continue consecutively for the other faces of the RVE and the RVEs associated with the
integration points of parent elements 2 through 5 (in the order specified in Section 2.2). In other
words, the positive-x face of the RVE for parent element 1 is sideset 7, negative-x is sideset 8,
positive-y is sideset 9, negative-y is sideset 10, positive-z is sideset 11, and negative-z is sideset
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12. The sidesets for the RVE for parent element 2 will start with id 13 and continue consecutively
in the same face order. The process continues for all five RVEs specified in this command line.

The second ELEMENTS line specifies that the integration point of element 6 of the parent region
mesh will be associated with the RVE that consists of element blocks 11, 12, 13, and 14. The
NODESET keyword says this RVE has a nodeset associated with each face of the RVE, starting with
nodeset id 15 on the positive-x face, with id's increasing consecutively for the other five faces in
the same order described in the paragraph above.

The six elements specified in these command lines must be in elernent blocks of the reference
region mesh that use the RVE material model.

2.3.5 Multi-Point Constraints

In the case in which the RVE has non matching surfaces, and therefore includes a block of mem-
brane elements on the exterior surfaces, the user must specify a set of multi-point constraints
(MPCs) to tie the membranes to the surface. This is done in the input file through use of an MPC
command block:

RESOLVE MULTIPLE MPCS = ERROR

BEGIN MPC

MASTER SURFACE = <string>membrane_surface_id

SLAVE SURFACE = <string>RVE_surface_id

SEARCH TOLERANCE = <real>tolerance

END

In this case, the membrane_surface_id corresponds to the single sideset that encompasses the
membrane block is the master and the single sideset that encompasses the exterior surfaces of the
RVE is the slave. While the underlying RVE may have non matching exterior surfaces, the oppos-
ing surfaces of the membrane block must have matching discretizations. More detailed information
on the use of MPCs, is discussed in the User's Guide.

2.3.6 RVE Boundary Conditions

Strain rates computed by elements in the reference region are applied through periodic prescribed
velocity boundary conditions on the faces of the associated RVEs. These are generated internally
by Sierra/SM so the periodic boundary conditions do not need to be in the user's input file. How-
ever, because the RVE region is quasistatic, each of the RVEs must be fixed against rigid body
motion. This must be done in the input file through use of the prescribed velocity boundary condi-
tions:

BEGIN PRESCRIBED VELOCITY pres_vel_name

NODE SET = <string>nodelist_name

FUNCTION = <string>function_name

SCALE FACTOR = <real>scale_factor

COMPONENT = <string>X1YIZ

END [PRESCRIBED VELOCITY pres_vel_name]
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This type of boundary condition is described in detail in the User's Guide but the use for RVEs
is restricted- Either the function must always evaluate to 0.0 or the s cale_f act or must have a
value of 0. This is essentially a way of using the prescribed velocity boundary condition to fix
the nodes in node l i st_name. However, in order for these conditions to work with the periodic
boundary conditions used to apply the strain rate, PRESCRIBED VELOCITY must be used rather
than FIXED DISPLACEMENT or PRESCRIBED DISPLACEMENT boundary conditions.

Generally, three BEGIN PRESCRIBED VELOCITY command blocks will be needed, one each for
X, Y, and Z components. In order to eliminate rigid body motion without over constraining the
motion, each BEGIN PRESCRIBED VELOCITY block should constrain exactly one node of an
RVE in one component direction. (However, nodelist_name may contain nodes from multiple
RVEs. Separate boundary condition blocks are not required for each RVE.). To prevent rigid body
rotations, the three constrained nodes on each RVE should not be collinear.
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Chapter 3

Explicit Subcycling

This chapter describes how to setup an analysis to use explicit subcycling. Subcycling can be used
to run different parts of the mesh at different time step sizes to improve speed.

Warning: Explicit subcycling is a capability still in the development stages. This
capability is not yet recommended for general use.

Explicit subcycling can be used in an explicit transient dynamics analysis to run one part of the
mesh at a small time step while running another connected part of the mesh at a large time step.
Explicit subcycling can provide a substantial model speedup only if two properties hold. First,
some region of the mesh must have a substantially smaller element critical time step than another
region of the mesh. Second, the portion of the mesh with the small critical time step must contain
a small fraction of the total number of elements used by the analysis.

Explicit subcycling divides the analysis domain into two regions: A coarse region iterating with a
large time step and a fine region iterating at a smaller time step that is some integer fraction of the
coarse time step. At the coarse mesh time step, both regions sync up to the same analysis time and
exchange information. Using the standard analysis technique, every element must run at the same
small time step. Testing has shown that an analysis run using subcycling can give equally accurate
results as an analysis run without subcycling. The accuracy of the simulation is subject to several
restrictions on cross region communication and compatible capabilities.
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3.1 Specifying Subcycling in Input

The recommended method to turn on subcycling is to use a feature to automatically generate the
coarse and fine regions in the input deck. This is done by adding the following command to the
presto region.

SUBCYCLE BLOCKS = <string list>block_names

If this command is present, Sierra/SMwill automatically generate and run a new input deck that can
be used for the subcycling. If the original input deck is named ̀input.i' the automatically generated
subcycling input deck will be named ̀input.subcycle.i' . The block_names specified are the names
of the blocks that are targeted for inclusion in the fine region (run with the small time step).

The algorithm to split the regions is done as follows.

• 1. Define the trial coarse region based off of everything not in the fine region.
• 2. Compute the critical time step of the coarse region as the smallest element time step in

that region.
• 3. Compute the maximum time step each node can be integrated at as the smallest time step

of any element near the node.
• 4. For every element in the mesh, if the element is attached to only nodes with time steps

greater than or equal to the coarse region time step, place the element in the coarse region.
• 5. For every element in the mesh, if the element is attached to any node with time steps less

than the coarse region time step, place the element in the fine region.
• 6. Split all boundary conditions defined on the coarse and fine region appropriately and write

to appropriate results files. Each region will generate independent output files.

The mathematical foundations of the subcycling algorithm used in Sierra/SM can be found in
Reference [1]. The portions of this paper specifically used in Sierra/SM are: Explicit-Explicit,
Central Difference, and Linear Interpolation method.
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3.2 Limitations of Subcycling

Subcycling is currently incompatible either in whole or in part with many other capabilities. The
capabilities that have incompatibility with subcycling include but may not be limited to the follow-
ing:

• Subcycling is incompatible with most capabilities that require an auxiliary region. This in-
clude representative volume elements (RVE), Gemini coupling, and multi-procedure analysis
coupled via hand-offs or solution control.

• Subcycling currently does not work with implicit dynamics, implicit statics, or modal anal-
ysis.

• Subcycling is currently not compatible with rigid bodies.
• Subcycling is incompatible with any critical time step computation method other than the de-

fault element based time step calculation. This includes nodal based and Lanczos algorithm
based time step computation methods.

Additionally several capabilities will not function correctly if that capability is operating at or
near the boundary between the coarse and fine region. If such a capability is included in the
subcycling analysis and that capability happens to cross the coarse/fine boundary, accuracy and
stability problems may result. The capabilities that are known to be have restrictions when used
with subcycling include but may not be limited to:

• Element death near the subcycling boundary may not be able to correctly determine when a
node shared between the two regions goes inactive (leading to accuracy and stability issues).

• Contact between any surface in the fine region and any surface in the coarse region cannot
be evaluated.

• Methods that define a force from an external load (such as CTH) can only be coupled to the
deformation of the coarse.

• No non-local element or boundary condition can span the coarse to the fine boundary. This
includes nodal based tetrahedra, MPCs, Spot Welds, Super Elements, Peridynamic bonds,
Cylindrical Joints, and the J-Integral computation.

• Nodal output quantities at the coarse to fine boundary may not be displayed properly in plot
files. Contributions to quantities such as nodal force may exist in both the fine and coarse
region and the outputs would need to be summed from both.
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3.3 Other Subcycling Issues

In parallel, subcycling will perform best if a mesh rebalance is performed to ensure both the fine
and coarse regions are divided evenly among the processor sets. A mesh rebalance command
similar to the one below can be used to automatically performance such a mesh rebalance. See the
User's Guide for more information on mesh rebalancing.

BEGIN REBALANCE

PERIODIC REBALANCE = AUTO

DELETE DEACTIVATED ELEMENTS AFTER REBALANCE = ON

END
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Chapter 4

Automatic Time Step Selector

For performance reasons, it is sometimes desired to run at the highest possible time step in explicit
dynamics. The NODE BASED TIME STEP and the LANCZOS TIME STEP have proven to yield a
higher time step than the default element time step for most problems. However, because these
routines take significantly more time to calculate, sometimes the performance benefits are unseen.
The automatic time step selector attempts to weigh the performance benefits of each time step
calculation. The time steps are compared every hundred steps, and the one proving most beneficial
is used for the proceeding hundred steps.

Currently, only the node based time step and the element time step are compared. Because the
node based time step takes longer to calculate than the element based time step (as noted above),
a scale factor is used when comparing the two. To run with the automatic time step selector, the
following must be included in the input file:

In the BEGIN PARAMETERS FOR PRESTO REGION block, the following line must be included:

BEGIN PARAMETERS FOR PRESTO REGION <string>presto_region

TIME STEP SELECTOR = AUTO

END PARAMETERS FOR PRESTO REGION <string>presto_region

Additionally, the node based time step syntax must also be included in the input file:

BEGIN NODE BASED TIME STEP PARAMETERS <string>name

END NODE BASED TIME STEP PARAMETERS <string>name
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Chapter 5

Modal Analysis

This chapter describes a simple modal analysis capability. This capability will compute the lowest
few vibration eigenmodes and values at the end of each model load step. This capability only
works with solid uniform gradient hex elements and augmented Lagrange tied contact.

35



5.1 Modal Analysis

Warning: Modal analysis is still a capability in the early development stages. This
capability is not recommended for general use, nor will any use of this capability
currently be supported by the Sierra/SMdevelopment.

BEGIN LANCZOS EIGEN SOLVER

MASS MATRIX = IDENTITY1LUMPED(LUMPED)

NUMBER OF EIGENPAIRS = <integer>N

DEBUG = OFF1ON(OFF)

END

The command NUMBER OF EIGENPAIRS defines the number of eigenvalues and modes to com-
pute. The lowest N modes will be computed. Significant expense is required to compute and store
each mode, thus N should be kept relatively small (no more than 25 or so).

The DEBUG command turns on or off additional debugging outputs from the eigensolver.

The MASS MATRIX allows the user to selectively compute the eigenvalues of the tangent stiffness
matrix when IDENTITY is set. Otherwise, the standard eigenvalue problem is computed with both
the tangent stiffness matrix and the lumped mass matrix. A consistent mass matrix is not available
at this time.
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Chapter 6

Solvers and Solver Options

6.1 Newton Solver

BEGIN SOLVER

BEGIN NEWTON

#

# convergence criteria commands

#

TARGET RESIDUAL = <real>target_resid

[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid(1.0e-4)

[DURING <string list>period_names]

ACCEPTABLE RESIDUAL = <real>accept_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid

[DURING <string list>period_names]

REFERENCE = EXTERNALIINTERNALIBELYTSCHKOIRESIDUAL1ENERGY

(EXTERNAL) [DURING <string list>period_names]

RESIDUAL NORM TYPE = ALL1TRANSLATIONISCALE_RB_ROTATIONS

(ALL) [DURING <string list>period_names]

END

END

#

# iteration control

#

MINIMUM ITERATIONS = <integer>min iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

# Selection of the linear solver for use in solving

# linearized Newton iterations

#

LINEAR SOLVER = <string>linear_solver_name
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The Newton solver is an nonlinear equation solver that is an alternative to the default conjugate
gradient (CG) solver. Each iteration of the Newton solver consists of reforming current tangent
stiffness matrix and re-solving the equation set with that current tangent. The Newton solver
is typically significantly more expensive than the CG solver but may be more robust if there is
substantial nonlinearity occurring over a time step. The Newton solver may also potentially prevent
overshooting of yielding or other material nonlinearity. If a model has very nonlinear materials and
is failing to converge with the CG solver the Newton solver may be worth trying.

The convergence criteria and iteration control commands in the Newton solver behave identically
to the equivalent commands in the CG solver. The L I NEAR SOLVER specifies the solver to use dur-
ing the linearized equation solution step each Newton iteration. the FE T I solver is recommended
but any available linear may work.
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6.2 Control Contact : Control Subset

BEGIN CONTROL CONTACT

CONTROL SUBSET = ADAGIOIALLIARSIJAS1SST

END

By default all implicit contact constraints are enforced simultaneously. The CONTROL SUBSET
option to the control contact solver block is an experimental option for enforcing different types
of constraints at different levels of the multilevel solver. . For example the following input will
control the node face (ADAGIO) contact constraints at level one and the analytic rigid surface
contact constraints (ARS) at level two. This means that ARS constraints are found held constant
while ADAGIO constraints are iteratively solved. Then the ARS constraints are updated and again
held constant while the ADAGIO constraints are iteratively solved again.

begin control contact control_al

level = 1

target relative residual = 5.e-04

control subset = ADAGIO

end control contact

begin control contact control ars

level = 2

target relative residual = 1.e-3

control subset = ARS

end control contact

Use of the CONTROL SUBSET will substantially increase analysis cost, but may lead to more robust
convergence if the model contains potentially conflicting contact constraint types acting on the
same nodes.
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Chapter 7

eXtended Finite Element Method (XFEM)

Warning: This capability is in development, and its behavior may change consid-
erably due to its status as an active research topic.

The XFEM command block may be used to introduce discontinuities in a finite element mesh via the
eXtended Finite Element Method (XFEM). Use cases for XFEM include modeling stationary or
propagating cracks in a finite element mesh, fast mesh generation via XFEM "carving," and adding
or removing material layers to simulate, e.g., material wear or additive manufacturing processes.
At its simplest, the XFEM provides a framework supporting duplication of mesh elements and
subsequent partitioning and assignation of material on each side of the cut surface to each duplicate.
This duplication procedure is illustrated in Figure 7.1. Piecewise planar element cuts through both
two-dimensional shell and three-dimensional mesh topologies are supported in the current XFEM
implementation. When an element is cut, the necessary quantities on the duplicated elements are
scaled by the volume fraction of the original cut element. The mass, volume, and the internal force
contribution are all scaled by the volume fraction. All other element quantities are calculated as
usual.

Figure 7.1: Example of XFEM element cutting and duplication.

The effective or cut volume of the domain is represented by the XFEM "submesh," a sub-element
geometry which captures the discontinuity surface within each cut element duplicate. Submesh
topologies for various element types are illustrated in Figure 7.2. The submesh output block,
named <blo ck_name>_s ubme s h, will be created and output along with results for visualization
purposes. Visualization with the submesh block is recommended as it offers an accurate repre-
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sentation of crack surface and fragment geometries, as well as relevant element and nodal fields,
whereas the XFEM computational elements themselves overlap and are therefore difficult to visu-
alize

(a) Four-node quadrilateral (b) Four-node tetrahedral (c) Eight-node hexahedral

Figure 7.2: Illustration of XPEM submesh topology for various mesh element topologies.

42



7.1 General XFEM Commands

BEGIN XFEM <string>xfem_name

BLOCK = <string list>block_name

INCLUDE ALL BLOCKS

ADD INFINITE PLANE = <real>px <real>py <real>pz

<real>nx <real>ny <real>nz

ADD DISC = <real>px <real>py <real>pz

<real>nx <real>ny <real>nz

<string>radius_function

MECHANICS GROWTH START TIME = <real>time(0.0)

MECHANICS GROWTH METHOD = <string>NOTHINGI

MECHANICS FAILURE(NOTHING)

CRITERION = <string>{AVG NODALIMAX NODALI

MIN NODALIELEMENTIGLOBAL}

VALUE OF <string>variable

{>=1>I=I<I<=} <real>threshold

FAILURE SURFACE EVOLUTION = <string>PLANARIPIECEWISE LINEARI

SINGLE CRACK(PLANAR)

ANGLE CHANGE = <string>NONEISTRESS EIGENVECTORI

ONE RINGILENGTH SCALE(NONE)

CREATE FACES = <string>ONIOFF(ON)

GENERATION BY NUCLEATION = <string>NOIELEMENT-BASED(NO)

NUCLEATION CRITERION = <string>

{AVG NODALIMAX NODALI MIN NODALIELEMENTI

GLOBAL} VALUE OF <string>variable

l>=1>1=1<l<=1 <real>threshold

CRACK BRANCHING = <string> RESTRICTEDIALLOWED(RESTRICTED)

BRANCHING CRITERION = <string>

{AVG NODALIMAX NODALI MIN NODALIELEMENTI

GLOBAL} VALUE OF <string>variable

f>=1>1=1<l<=1 <real>threshold

PROPAGATION ANGLE LIMIT = <real> angle

ANGLE CHANGE LENGTH SCALE OUTER RADIUS = <real>outer_radius

ANGLE CHANGE LENGTH SCALE INNER RADIUS = <real>inner_radius

START TIME = <real>start_time

INITIAL SURFACE COHESIVE = <string>FALSEITRUE(FALSE)

COHESIVE SECTION = <string>cohesive_section_name

COHESIVE MATERIAL = <string>cohesive_material_name

COHESIVE MODEL = <string>cohesive_model_name

SOLID GROWTH DIRECTION VARIABLE =

<string>direction_field_name(stress)

SHELL GROWTH DIRECTION VARIABLE =

<string>direction_field_name(memb_stress)

VOLUME FRACTION LOWER BOUND = <real>lower_bound(0.0) DELETEI

RETAIN (DELETE)

CALCULATE FRAGMENT IDS = OFFION(OFF)

INITIAL CUT WITH {SIDESETISTL}
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<string>file_or_surface_name

REMOVE fINTERIORIEXTERIORINOTHING(NOTHING)1

CUT WITH DAMAGE VARIABLE = <string>variable_name

END [XFEM <string>xfem_name]



7.2 XFEM for Fracture and Fragmentation

The most common application of XFEM is modeling of fracture, fragmentation, and failure in
structures. Currently supported fracture capabilities are

• prescribed, static or stationary cracks,
• prescribed cracks with a specified direction and rate of growth,
• prescribed cracks which are allowed to propagate by mechanics-based growth criteria, and
• cracks which are nucleated and propagated via mechanics-based criteria.

These capabilities are detailed below.

7.2.1 Fixed and Prescribed XFEM Discontinuities

A "fixecr XFEM discontinuity is stationary in both time and space; the failure surface does
not change after initialization. A fixed infinite plane discontinuity can be inserted via the
ADD INFINITE PLANE command, while a disc-shaped cut with a fixed radius may be inserted
via the ADD DISC command. Note that the specified surfaces are used to cut the mesh in the
reference configuration.

A "prescribecr XFEM discontinuity is restricted to propagate along a specific path in time. In
order to prescribe an XFEM discontinuity, a disc must be inserted via the ADD DI sc command.
The discontinuity may "grow" by adding a time-varying function at the end of the ADD DISC
command or by mechanics growth, described in Section 7.2.2 below.

7.2.2 Spontaneous Crack Nucleation, Growth, and Branching

The current XFEM implementation enables the natural evolution of fractures in materials based on
mechanics nucleation, growth, and branching criteria.

Crack growth Growth, or propagation, can be enabled via the following command lines:

MECHANICS GROWTH METHOD = MECHANICS FAILURE

CRITERION = <string>fAVG NODALIMAX NODALI

MIN NODALIELEMENTIGLOBALI

VALUE OF <string>variable

f>=1>1=1<l<=1 <real>threshold

FAILURE SURFACE EVOLUTION = PLANARIPIECEWISE LINEARI

SINGLE CRACK(PLANAR)

The CRITERION command line specifies the criterion for propagation or growth of the crack from
element to element. This command is precisely analogous to element death; refer to the User's
Guide [1] chapter on elements for additional details. FAILURE SURFACE EVOLUTION specifies
any geometric restrictions on fracture growth:

• PLANAR is the default option, which restricts the crack to grow only in the plane in which it
is initialized, preventing the crack from turning or twisting.

• PIECEWISE LINEAR allows a crack to change directions such that it is planar within a
single element; however, this option may lead to a fracture surface which is discontinuous
from element to element.
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Mechanics growth can be delayed in the analysis by specifying a start time (> 0) in the ME C HAN I CS
GROWTH START TIME command.

The way in which the crack growth angle change is computed can be specified via the ANGLE
CHANGE command line in order to smooth or regularize sharply varying stress fields in the neigh-
borhood of crack fronts. Available angle change options are

• STRESS EI GENVEC TOR, which calculates the growth angle of the crack from the maxirnum
principal stress eigenvector in the element to be cut;

• ONE RING, which defines the new failure plane by the maximum principal stress eigenvec-
tor of the average stress in the node-connected neighboring elements (or one-ring) of the
element to be cut; and

• LENGTH SCALE, which computes the crack failure plane as the maximum principal stress
eigenvector of the average stress in elements within a specified radial distance of the element
to be cut. This distance can be specified via the ANGLE CHANGE LENGTH SCALE OUTER
RAD I Us command. By specifying ANGLE CHANGE LENGT H S CALE INNER RAD I U s, in
addition to including elements inside a given outer length scale, the growth algorithm will
exclude elements within a given inner radius of the crack front from the direction compu-
tation. Because the length scale entails a computation involving, in general, a number of
elements surrounding the crack front, this option may incur significant additional simulation
time within in each load step.

The variable used to calculate the angle change can be specified via

SOLID GROWTH DIRECTION VARIABLE = .

SHELL GROWTH DIRECTION VARIABLE = .

for solid and shell elements, respectively. The default variable used for solid elements is "stress,"
while the default variable used for shell elements is "membrane stress."

Crack nucleation Spontaneous nucleation, or initiation, of cracks may be controlled by the com-
mand lines

GENERATION BY NUCLEATION = <string>NOIELEMENT-BASED(NO)

NUCLEATION CRITERION =

Currently, only element-based nucleation is supported, in which a single element is cut if it ex-
ceeds the user-defined nucleation criterion (which follows the same form as the growth criterion).
Nucleated cracks then grow normally according to the specified mechanics growth criterion.

Crack branching Branching behavior may also be modeled via the commands

CRACK BRANCHING = ALLOWED

BRANCHING CRITERION =

Currently, cracks may only branch from a single point on an element edge (i.e., from a virtual
node on the element edge created by the first cut). Examples of eligible and ineligible branching
locations are illustrated in Figure 7.3. All presently cut elements are branching candidates. The
user-defined failure condition is examined for each element, and if the value exceeds the failure cri-
teria, the stress eigenvectors are calculated and used to determine the possible branching direction.

46



Initial Cut Allowed Branching Restricted Branching

Figure 7.3: Example of allowed and restricted branching.

7.2.3 Cohesive Zone Insertion

Cohesive zones can be adaptively inserted between the XFEM discontinuities in order to bet-
ter capture fracture patterns, convergence, and energy dissipation. To insert cohesive zones with
XFEM,

• a cohesive section must be specified in the XFEM command block via the COHES IVE
SECT ION command line,

• a cohesive material must be specified via the COHES IVE MATERIAL command line, and
• a cohesive model must be specified via the COHESIVE MODEL command line.

In order for the cohesive zones to be inserted with the stress initialized to that of the failing element,
the INT T IAL SURFACE COHE S IVE = TRUE option must be used.

Warning: Cohesive zone insertion for tetrahedral elements is not yet supported.

7.2.4 Other Options

Several miscellaneous or experimental XFEM capabilities are available for fracture and fragmen-
tation analysis.

Volume Fraction Lower Bound By default, the XFEM implementation in Sierra does not "clip"
or remove elements with arbitrarily small volume fractions. This can create issues with the condi-
tioning of implicit solves.

The VOLUME FRACT ION LOWER BOUND command allows the user to specify a threshold. By
default, when a lower bound is provided with this command, elements whose volume fractions are
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below the specified threshold will be removed from the calculation (DELETE). When the RETAIN
option is specified, elements whose volume fractions are below this specified threshold will be
retained, but have their volume fractions are reset to the lower bound specified by the threshold
value. This insures that the smallest volume fraction of any partial element anywhere in the domain
will not be smaller than the threshold.

Warning: The VOLUME FRACTION LOWER BOUND can result in the loss of mass
conservation for an embedded object, whether in the default mode when these small
volume fractions are removed or in the RETAIN mode when mass is added.

XFEM damage-based failure XFEM can also be used to cut the mesh along a specific field on
the mesh (such as a phase field damage variable). The name of this variable is specified via the
CUT WITH DAMAGE VARIABLE command.

Warning: The CUT WITH DAMAGE VARIABLE option is very much in-
development and not a hardened capability.

Identification of separate XFEM fragments The CALCULATE FRAGMENT IDS command can
be used to output both element and nodal fragment ID fields. Turning this option to ON will set
both the element variable called element_fragment_id as well as the nodal variable called
node fragment id at the end of the simulation. Each ID corresponds to a distinct fragment
from the XFEM simulation. Elements and nodes within a fragment will all be assigned the same
fragment ID. Labeling of the fragment IDs is arbitrary, but the numbering always begins with
1 and goes to the total number of fragments in the simulation. Post-processing scripts can be
use in conjunction with these fields to compute quantities such as fragment mass and momentum
distributions.
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7.3 XFEM Carving

In addition to modeling fracture and fragmentation, XFEM can also be used for fast mesh gen-
eration or wearing of surfaces via "carving?' The carving procedure is roughly equivalent to an
immersed boundary approach; boundary and contact surfaces are represented by the XFEM cut
surface, and the effective carved element response is computed via XFEM volume fraction scal-
ing.

The initial mesh may be carved with the command line

INITIAL CUT WITH {SIDESETISTL} = <string>file or surface name

[REMOVE {INTERIORIEXTERIORINOTHING(NOTHING)}]

where s T L indicates to carve the mesh with a stereolithography (STL) file [2], while the s I D E S E T
option indicates to carve with a specified sideset from the input mesh file.

Carved material may be removed after the cut is made via the option REMOVE { INTERIOR l
EXTERIOR}, where the "exterior" consists of all material points lying outside of the region
bounded by the carving surface in the direction of its outward normal vector; similarly, the "in-
terim' is the region bounded by the carving surface in the direction opposite its outward normal.
As an example, the XFEM command block to cut all blocks with a surface defined in an STL file
file. s t 1 and remove material interior to the surface is the following:

BEGIN XFEM

INCLUDE ALL BLOCKS

INITIAL CUT WITH STL file.stl REMOVE INTERIOR

END [XFEM]
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7.4 Use of XFEM with Existing Capabilities

An XFEM command block may be used in conjunction with a number of other core code capabil-
ities, as enumerated in [1]. A brief list of compatible capabilities and usage guidelines are given
below.

7.4.1 Contact

BEGIN CONTACT DEFINITION <string>name

...

CONTACT SURFACE <string>name CONTAINS

<string_block_name>_CONTACT_SURFACE

BEGIN INTERACTION DEFAULTS

SELF CONTACT = ON

GENERAL CONTACT = ON

END

END [CONTACT DEFINITION <string> name]

Contact may be enforced on a block that has been cut using XFEM, including the cut surface itself.
Contact can be defined using the GENERAL CONTACT = ON command within the INTERACTION
DEFAULTS section of the contact definition. A contact surface called < string_block_name>
_CONTACT_SURFACE is created for each XPEM block; thus, a contact surface may be defined
on an XFEM block by using the CONTACT SURFACE <string>name CONTAINS < string_
block_name>_CONTACT_SURFACE command line. The XFEM contact surface is also output to
the results file as a shell eleinent block for visualization purposes.

7.4.2 CONWEP Blast Pressure

BEGIN BLAST PRESSURE <string> name

BLOCK = <string_block_name>_submesh

END [BLAST PRESSURE <string> name]

XFEM can also be used in conjunction with a CONWEP blast pressure. The pressures that are
applied to the cut faces are scaled by the area fraction of that cut face. The pressures are applied to
the face throughout the duration of the blast.

7.4.3 Implicit Dynamics

XFEM may be run in implicit dynamics. If an implicit simulation is run, it is highly recommended
to include an adaptive time stepping block, as shown below. Adaptive time stepping helps to
account for the increased complexity of the problem during crack growth.

For additional guidance and command syntax, consult the User's Guide [1] section on implicit time
step control.
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Warning: Convergence of XFEM simulations in implicit dynamics mode is cur-
rently tenuous; robustness issues may occur when using this analysis combination.
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Explicit Only

Chapter 8

Explicit Control Modes

8.1 Limitations and Requirements

In explicit dynamic calculations, the Explicit Control Modes method uses a coarse mesh overlaying
the actual problem mesh (called the reference or fine mesh) to increase the critical time step. The
name control mode comes from the implicit multigrid solution algorithm in Adagio. The Explicit
Control Modes algorithm is discussed in [1] and [2].

Warning: Explicit Control Modes is an experimental analysis technique. It has
been shown to be an extremely useful technique on specific problems. However,
it does not interoperate with some features, such as rigid bodies. Contact the Sier-
ra/SM development team for more information on the features that do cooperate
with Explicit Control Modes.

Known Issue: When using Explicit Control Modes, the Lanczos and Power
Method time step estimators cannot yet be used with problems that have contact,
rigid bodies, blocks in the fine mesh that are not controlled by the coarse mesh, or
coarse elements that contain no fine nodes.

In explicit dynamics, nodal accelerations are computed by dividing the residual (external minus
internal) force by the nodal mass. In the Explicit Control Modes algorithm, the reference mesh
residual is mapped to the coarse mesh, and accelerations are computed on the coarse mesh. These
accelerations are then interpolated back to the reference mesh. The portion of the residual with
higher frequency content (i.e., that which is not representable by the basis functions of the coarse
mesh) determines a fine mesh acceleration that is added to the acceleration interpolated from the
coarse mesh.

By computing the acceleration on the coarse mesh, the Explicit Control Modes algorithm allows
for the critical time step to be computed based on the size of the coarse mesh rather than the size
of the reference mesh. A critical time step is estimated based on the coarse mesh. Mass scaling is
applied to the high frequency component of the acceleration (computed on the reference mesh to
increase the time step to the coarse mesh critical time step). Mass scaling introduces error, but the
error only occurs in the high frequency part of the response. In contrast, traditional mass scaling
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affects the full spectrum of structural response. Explicit Control Modes is effective in problems in
which the coarse grid represents the frequency range of interest and is significantly coarser than
the reference mesh to maximize the critical time step.

The choice of the degree of refinement in the coarse and reference meshes has a large influence on
the effectiveness of the Explicit Control Modes algorithm. The reference mesh should be created
to give a discretization that is appropriate to capture the geometry of the problem with sufficient
refinement to adequately represent gradients in the discretized solution. The coarse mesh should
completely overlay the reference mesh, and it should be coarser than the reference mesh at every
location in the model. All coarse elements need not contain elements in the reference mesh; it is
possible to use a coarse mesh that extends significantly beyond the domain of the reference mesh.

The user has the freedom to create a coarse mesh that gives an acceptable critical time step without
using an excessively crude discretization. Remember that the reference mesh controls the spatial
discretization, while the coarse mesh controls the temporal discretization of the model.

To use Explicit Control Modes, the user should set up the reference mesh file and the input file as
usual, except that the following additional items must be provided:

• A coarse mesh must be generated, as discussed above. The coarse mesh must be in a separate
file from the reference mesh, which is the real model.

• A second FINITE ELEMENT MODEL command block must be provided in addition to the
standard definition for the reference finite element model in the input file. This command
block is set up exactly like the first FINITE ELEMENT MODEL command block [3] except
that the mesh file referenced is the coarse mesh instead of the reference mesh. Even though
the coarse mesh uses no material models, each block in the coarse mesh must be assigned a
material model.

• A CONTROL MODE S REGION command block must appear alongside the standard PRE S TO
REGION command block within the PRESTO PROCEDURE command block. The presence of
the CONTROL MODES REGION command block instructs Presto to use the Explicit Control
Modes algorithm. The CONTROL MODES REGION command block is documented in Sec-
tion 8.2. It contains the same commands used within the standard PRESTO REGION com-
mand block, except that the commands in the CONTROL MODES REGION command block
are used to control the control modes algorithm and the boundary conditions on the coarse
mesh.
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8.2 Control Modes Region

BEGIN CONTROL MODES REGION

# model setup

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS [WITH <string>coarse_block] =

<string list>control_blocks

# time step control

TIME STEP RATIO SCALING = <real>cm_time_scale(1.0)

TIME STEP RATIO FUNCTION = <string>cm_time_func

LANCZOS TIME STEP INTERVAL =

<integer>lanczos interval

POWER METHOD TIME STEP INTERVAL =

<integer>pm_interval

# mass scaling

HIGH FREQUENCY MASS SCALING =

<real>cm_mass_scale(1.0)

# stiffness damping

HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT =

<real>cm_stiff damp(0.0)

# kinematic boundary condition commands

BEGIN FIXED DISPLACEMENT

# Parameters for

# fixed displacement

END [FIXED DISPLACEMENT]

# output commands

BEGIN RESULTS OUTPUT <string> results_name

# Parameters for

# results output

END RESULTS OUTPUT <string> results_name

END [CONTROL MODES REGION]

The CONTROL MODES REGION command block controls the behavior of the control modes al-
gorithm and is placed alongside a standard PRESTO REGION command block within the PRESTO
PROCEDURE scope. With the exception of the CONTROL BLOCKS command line, all the commands
that can be used in this block are standard commands that appear in the Presto region. These com-
mands have the same meaning in either context- they simply apply to the coarse mesh or to the
reference mesh, depending on the region block in which they appear. Sections 8.2.1 through 8.2.3
describe the components of the c ONTROL MODES REGION command block.
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8.2.1 Model Setup Commands

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS [WITH <string>coarse_block] =

<string list>control_blocks

The command lines listed above must appear in the CONTROL MODES REGION command block
if Explicit Control Modes is used. The USE FINITE ELEMENT MODEL command line should
reference the finite element model for the coarse mesh. This command line is used in the same
way that the command line is used for the reference mesh [3].

The CONTROL BLOCKS command line provides a list of blocks in the reference mesh controlled
by the coarse mesh. The block names are listed using the standard format for referencing mesh
entities [3]. For example, the block with an ID of 1 would be listed as block_1 in this command.
Multiple CONTROL BLOCKS command lines may be used.

The CONTROL BLOCKS command line does not require the coarse blocks used to control the fine
blocks to be listed. In the following example, blocks 10 and 11 are controlled by the coarse mesh,
but the element blocks in the coarse mesh that control those blocks are not listed:

CONTROL BLOCKS = block_10 block_11

If the CONTROL BLOCKS command line is used in this manner, the search for fine nodes con-
tained within coarse elements will be conducted for all elements in the coarse mesh. The
coarse block used to control a given set of fine blocks can optionally be specified by using the
CONTROL BLOCKS WITH coarse_block variant of the command. For example, the command:

CONTROL BLOCKS WITH block_1 = block_10 block_11

would use block 1 on the coarse mesh to control blocks 10 and 11 on the fine mesh. This variant of
the command is necessary when the coarse blocks overlap. It removes any ambiguity about which
coarse elements control which fine nodes. This is particularly useful for contact problems where
the fine block on one side of an interface should be controlled by one block, and the fine block on
the other side of the interface should be controlled by a different block. Only one coarse block can
be listed in a given instance of this command. If there are multiple coarse blocks, they must be
listed in separate commands.

8.2.2 Time Step Control Commands

The time step control commands for Explicit Control Modes are based on the Presto time step
control commands (see the Explicit Dynamic Time Step Control chapter of [3]).

TIME STEP RATIO SCALING = <real>cm_time_scale(1.0)

TIME STEP RATIO FUNCTION = <string>cm_time_func

LANCZOS TIME STEP INTERVAL =

<integer>lanczos_interval

POWER METHOD TIME STEP INTERVAL =

<integer>pm_interval
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The control modes algorithm computes a node-based time step for the coarse mesh at each time
step and uses this as the default time step. This time step is typically larger than the critical time
step for the fine mesh.

The TIME STEP RATIO SCALING and TIME STEP RATIO FUNCTION command lines allow
the user to control the time step used with explicit control modes. The TIME STEP RATIO
SCALING command is used to specify a scale factor cm_t ime_s c ale, which has a default value of
1.0. The T I ME STEP RAT I 0 FUNCT ION command is used to specify a function cm_t ime_f unc
that is used to control the scale factor as a function of time. At any given time, a scale factor, fis,
is computed by multiplying cm_t ime_scale by the current value of the function. Both of these
commands are optional and one can be used without the other.

The time step At, is computed as a function of fa, as well as of the time step of the fine mesh, Atf
and the time step of the coarse mesh, At,.

At = Atf + fts(At, — Atf) (8.1)

Thus, if the scale factor is zero, the time step of the fine mesh is used, and if it is one, the time step
of the coarse mesh is used.

The nodal time step estimator for the coarse mesh typically works well on problems where the fine
mesh overlaid by the coarse mesh is essentially isotropic. In cases where it is not, such as when
there are significant voids covered by the coarse mesh, the nodal time step can be non-conservative,
resulting in stability problems. The time step control command lines described above can be used
to manually scale down the time step in such scenarios.

Here is an example of stubs for controlling the time step.

# Coarse/Fine mesh scaling function.

begin function cm_time_ratio

type is piecewise linear

begin values

0.0

0.005

0.01

end values

1.0

1.0

1.0

end

begin control modes region beamCoarse

use finite element model beamCoarse

control blocks = block_1

filter = mass

time step ratio scaling = 1.0

time step ratio function = cm_time_ratio

high frequency mass scaling = 1.0

end

This particular example uses the default parameters. Non-default parameters may be accessed by
changing the corresponding 1.0 values.
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Alternatively, either the Lanczos or Power Method global time step estimators can be applied to
the coarse mesh to give an improved estimate of the stability limit These are invoked using the
LANCZOS TIME STEP INTERVAL or POWER METHOD TIME STEP INTERVAL command lines,
respectively. Only one of these command lines can be used at a time, and both commands specify
an interval at which the global time step estimate is calculated. When the global time step estimate
is calculated, a ratio of the global estimate to the nodal estimate is calculated, and this ratio is used
to scale the nodal estimate in subsequent time steps in which the global estimate is not computed.

Experience has shown that the time step predicted by the global time step estimators is typically
slightly higher than the actual stability limit For this reason, it is recommended that a scale factor
of 0.9 be used in conjunction with these estimators. This can be set using the TIME STEP SCALE
FACTOR command line in the TIME CONTROL block as described in [3].

8.2.3 Mass Scaling Commands

HIGH FREQUENCY MASS SCALING =

<real>cm_mass_scale(1.0)

The HI GH FREQUENCY MASS SCALING command line allows the user to control the mass scaling
applied to the high frequency component of the response. The mass scaling factor required to stably
integrate the high frequency response at the time step being used is computed at every node on the
fine mesh. The parameter cm_ma s s_s c a l e that can optionally be supplied with this command line
is applied as a multiplier to that mass scaling. If that mass scaling (multiplied by cm_ma s s_s ca 1 e)
is greater than 1.0, then the scaled mass is used at that node. If not, the original nodal mass is used.

It may be useful for some models to use this command line to set cm_mass_scale to a value
greater than 1.0 to stabilize the high frequency response. Experience has shown, however, that this
is rarely needed.

It is also possible to request a consistent coarse mass matrix, instead of the default lumped mass
matrix. Here is an example illustrating the syntax.

begin control modes region beamCoarse

use finite element model beamCoarse

control blocks = block_l

coarse mass linear solver = feti

coarse mass matrix = consistent

filter = consistent

time step ratio scaling = 0.2

end

8.2.4 Damping Commands

HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT =

<real>cm_stiff_damp(0.0)

The HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT command is used to apply
stiffness-proportional damping on the high frequency portion of the response in Explicit Control
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Modes. This may help reduce high frequency noise in problems that have abrupt loading such
as that caused by contact. The default value of cm_s t i f f_damp is 0.0. The value specified for
cm_s t i f f_damp can be between 0 and 1. It is recommended that small values (around 0.001) be
specified if this option is used.

8.2.5 Kinematic Boundary Condition Commands

BEGIN FIXED DISPLACEMENT

# Parameters for fixed displacement

END FIXED DISPLACEMENT

All types of kinematic boundary conditions can be applied to the coarse mesh. This is done by
inserting a kinematic boundary condition command block in the CONTROL MODES REGION com-
mand block. The mesh entity (node set, surface, or block) to which the boundary condition is
applied must exist on the coarse mesh.

This capability is potentially useful to ensure better enforcement of kinematic boundary conditions
on the fine mesh by applying the same type of boundary condition on the portion of the coarse
mesh that overlays the portion of the fine mesh to which boundary conditions are applied. For
example, if there is a node set on the fine mesh that has a fixed displacement boundary condition, a
node set can be created on the coarse mesh that covers the same physical domain. The same fixed
displacement boundary condition could then be applied to the coarse mesh.

Although the capability to enforce boundary conditions on the coarse mesh is provided, it is not
necessary to do so. It is also often difficult to create a node set on the coarse mesh that matches the
discretization of the node set on the fine mesh. Users are advised to initially prescribe kinematic
boundary conditions only on the fine mesh and only prescribe boundary conditions on the coarse
if the initial results appear questionable.

8.2.6 Output Commands

BEGIN RESULTS OUTPUT <string> results_name

# Parameters for results output

END RESULTS OUTPUT <string> results_name

Variables can be output from the coarse mesh just as they can from the fine mesh with Explicit
Control Modes. Because the actual results of interest for the model all reside on the fine mesh, it
is typically not necessary to output results on the coarse mesh. However, this can be helpful for
debugging purposes.

The syntax for the results output for the coarse mesh is identical to that used for output from the
fine mesh [3]. The only thing that differentiates the RESULTS OUTPUT command block for the
coarse mesh from that of the fine mesh is that the results output block for the coarse mesh is put
in the CONTROL MODES REGION command block instead of in the PRESTO REGION command
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block. The output files for the coarse and fine mesh must be different from each other, so different
output file names must be used within the output blocks for the coarse and fine meshes.

One of the most useful variables to output from the coarse mesh is the nodal timestep. This
variable is similar in nature to the element t imestep, which exists on the fine mesh, but is a nodal
variable rather than an element variable and exists on the coarse mesh. The nodal timestep
reports the critical time step calculated for each node on the coarse mesh. If the coarse time step is
higher than expected, the output from nodal_time_step can be examined to see which region
of the coarse mesh is controlling the time step.

Central difference time integration is performed on the coarse mesh in addition to the fine mesh, so
the displacement, velocity, and acceleration variables can be requested for visualization
on the coarse mesh.

8.2.7 ECM with Lanczos

As the known issue suggests that Lanczos works with ECM. Here's an example.

begin control modes region beamCoarse

use finite element model beamCoarse

control blocks = block_1

filter = mass

time step ratio scaling = 0.9

high frequency mass scaling = 1.0

lanczos time step interval = 100

end

Assume for clarity that the Lanczos time step size is significantly larger than the element time
step size. Initially the Element time step in Lanczos is used. At the following time
steps, the time step size increases the time step size by a factor of 1.1, the default value of the
time step increase factor mentioned in [3] section 3.2.1.5. When the time step size is
near to time Time step from Lanczos method, Lanczos time step, a different time step is used.
The maximal time step may depend on time step increase factor and other Lanczos
parameters. To compare to Lanczos with no coarse grid, add to the presto region block

begin lanczos parameters setl

number eigenvalues = 50

eigenvalue convergence tolerance 1.Oe-4

update step interval = 100

vector scale = 1.e-8

debug = on

end lanczos parameters setl

In the case at hand, the ECM increases the time step from 4e — 7 to 1.5e — 6.
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8.3 ECM Theory

Explicit transient dynamics is a well-established capability for modeling large deformations of
structures. It is common practice in explicit transient dynamics to seek a balance between com-
putational efficiency and accuracy. Mass scaling [4] has traditionally been used as an approach to
increase the critical time step limit associated with the central difference time integrator. Unfortu-
nately, this has an undesirable side effect of mass damping dynamic modal response over the entire
frequency spectrum. To mitigate this effect, methods have been developed in which the damping
is proportional to the frequency [5]. In Adagio the Explicit Control Modes algorithm performs
an efficient modal decomposition of the frequency spectrum, allowing mass damping only on the
high frequency modes. Examples will be presented that demonstrate that this approach yields ac-
curate low frequency response, while often using larger time steps due to the mass scaling the high
frequency response.

8.3.1 Introduction

Finite element analysis of transient dynamic problems is a production capability in many appli-
cation areas. In these analyses an important question to be addressed by the analyst is the choice
of using an explicit or implicit time integrator. It is well understood that the central difference
explicit time integrator is efficient per time step but is restricted to taking relatively small, critical
(or stable) time steps [6, 7]. An implicit time integrator, specifically the Hilber—Hughes—Taylor
(HHT) time integrator [8], with the proper choice of parameters has no such stability limit allow-
ing larger time steps but produces a system of equations that need to be solved every time step. As
noted in [8], a consequence of choosing a large time step for the implicit time integrator is that it
produces numerical damping in all frequencies, but predominantly in the highest frequencies. Just
how much damping and in what modes depends on the particular problem. Thus, the question of
what time integrator to use is much more than simply one of efficiency. Certainly, one must know
well the class of problems to be solved when making this choice.

Simulations requiring necessarily finer discretizations to accurately represent modal stiffness and
resolve details in the stress field are amenable to Explicit Control Modes. For the explicit time
integrator, this imposes a critical time step restriction that can be limiting. However for some—
possibly many—analyses the structural response is in the lower frequency spectrum, i.e., the in-
fluence of the modal content inherent in fine mesh on the low-frequency dynamics is of interest
and not necessarily the high-frequency dynamics themselves. More precisely, spatial resolution as
opposed to temporal resolution is needed for many problems (this premise is one that we intend to
support in the examples).

It seems appropriate, then, to consider an algorithmic approach that can improve the stability limit
of the explicit time integrator. Most importantly, we recognize that this approach needs to be
accurate for low-mode response and competitive with implicit dynamics

8.3.2 Modal Decomposition Approach

The objective of this algorithm is to modally decompose the dynamics (in the context of an explicit
transient dynamics time integrator) into low-frequency and high frequency response. Having this
decomposition may provide options such as integrating the low-frequency modes with explicit time
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integration and the high-frequency modes with an implicit time integrator.

The decomposition algorithm is based on applying multigrid concepts within an explicit central
difference time integrator. We will limit the algorithm to consider only one addition level of coars-
ening. Thus, in addition to the fine mesh or reference mesh, we introduce a set of coarse basis
functions that will describe the low-mode response.

The vector of external nodal forces on the fine mesh is gni" . Also the vector of internal nodal forces
on the fine mesh fi.% is a obtained from the divergence of the stress. In this work we assume that
there is no contact, in which case the nodal residual force is

r = pext int
fni

Let M denote the diagonal, lumped [9], mass matrix for the fine mesh, and let x denote the vector
of displacements on the fine mesh. Expressed in terms of the nodal displacements, the dynamic
equilibrium equations is

Mz = r. (8.2)

Let 0 denote an interpolation (prolongation) matrix associated with a coarse space of functions.
The number of rows in 0 equals the number of rows in x or r, while the number of columns in is
typically smaller. The matrix can be obtained from either a coarse finite element mesh or by using
an algebraic approach [10, 11]. Given 0, the acceleration on the fine mesh can be written as

= 04 +Iv (8.3)

where q is a vector of generalized displacements associated with the low frequency part of the
response, and xhf is a vector of displacements associated with the high frequency part of the re-
sponse.

The task now is to derive the equation to accomplish this decomposition making use only of the
residual vector, r, and mass matrix, M, on the fine mesh, recognizing that there are no properties on
the coarse mesh in the usual finite element sense. As in the multigrid method, the modal stiffness
of low-mode response and the corresponding mass matrix is obtained using a restriction operator
of properties/quantities from the fine mesh.

The low and high frequencies are decoupled by imposing the M orthogonality,

4Temihf =

of the high and low frequency displacements. The orthogonality condition holds for all .4 if and
only if

OTM.thf = O. (8.4)

Equation (8.4) implies that the high frequency part of the residual is orthogonal to the coarse space
spanned by the columns of 0. The coarse mesh mass matrix is given by

Mc = OTMO.

Substitution of equation (8.3) into equation (8.2), pre-multiplying by OT and making use of equa-
tion (8.4) leads to the low frequency equilibrium condition

= 4.1)T r. (8.5)
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This way of obtaining a coarse system from (13, is called Galerkin coarsening [11]. For reference,
the coarse grid stiffness matrix Ic corresponding to the fine mesh tangent stiffness matrix K is
given by

K=0TK0.

Next the high frequency equilibrium equation is derived. Solving for q in equation (8.5) gives

q=M,710Tr. (8.6)

From equation (8.2), equation (8.3), and equation (8.6) deterrnine the high frequency equilibrium
condition

Mxhf =r—M0M,710Tr. (8.7)

At this point no approximations have been made. To sum up, substituting equation (8.6) and
equation (8.7) into equation (8.3) leads to

= oAcioTr (r moitcloTr)

low frequency high frequency

(8.8)

The lumped mass matrix is required to obtain the most accurate approximation properties for the
explicit central difference time integrator [7, 12]. Thus, given that we are integrating the low-
frequency response with central difference, a lumped representation is needed. It is unclear that
the argument for finite elements and the fine mesh extend to the Galerkin coarse problem. The
lumping is done simply by applying the restriction operator to the diagonal lumped fine mesh mass
matrix,

Mc = (pTivio.

8.3.3 Explicit-Explicit Partitioning

First we consider explicit time integration for the low-frequency modes. The critical time step for
integrating these modes is constructed, again via projection of nodal quantities on the fine mesh. If
AC denotes the critical time step for the coarse mesh, then a node-based estimate [6] is given by

At: = min 2
— coarse nodes

0TM

OT KM"

where Kin' is a vector that contains the maximum modal stiffness for each node of the fine mesh.
Details of the calculation of the maximum modal stiffness can be found in [6].

Next, we wish to make use of the assumption that the high-frequency dynamics are negligible. The
accelerations represented by the second term in equation (8.8) correspond to those high-frequency
modes. The idea is to replace M-1 in the second term of equation (8.8) by M-1, where

= Ma, (8.9)

for a diagonal matrix a that contains a scale factor for each node of the fine mesh. These scale
factors are greater than 1 wherever the nodal based time step at a fine mesh node is smaller than
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the critical time step on the coarse mesh.

174: (Atccrm) 2 if 2 K >
ai =

1 otherwise
(8.10)

Consequently, the mass scaling produced by equation (8.10) is applied only to the high-frequency
modes that could not otherwise be integrated stably with the central difference time integrator at
the critical time step on the coarse mesh. The net result for the acceleration, I, on the reference
mesh is of the form

.0Ac1er+ A-4-1 (r - mvAcier)

low frequency mass-damped high frequency

8.3.4 Energy Ratio: a Measure of Approximation

(8.11)

Kinetic energy calculations can be performed for the low frequency and high frequency contribu-
tions separately. Using time integrated acceleration components in (16), the kinetic energy in the
low frequencies is,

1
KEIf = 

2
-MIlvlf + Ata'Acie'Tr112

Likewise, the kinetic energy in the high frequencies is,

1
KEhf = 2

 
MIlvhf + At11-1-1 

(r _ Aci (DT r) 112

With the kinetic energy quantities, an energy ratio is computed as follows,

Energy Ratio =
KElf + KEhf

Obviously, the time integrated estimates of the kinetic energies require additional memory yet
they provide a useful measure for the approximations being made with the explicit-explicit modal
filtering. When there is little or no approximation made using a mass-damped high frequency
response the energy ratio is asymptotically approaching unity. In contrast, when the approximation
error is significant, the energy ratio is well below one.

KElf

(8.12)

(8.13)
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11111,- Chapter 9
implicit Only

External Loadstep Predictor

Production-ready loadstep predictor types are available in Sierra/SM [1]. The LOADSTEP
PREDICTOR command block controls the behavior of the predictor that is used to predict the solu-
tion at the beginning of a new load step. This command block is placed in the SOLVER scope.

The EXTERNAL, EXTERNAL_FIRST and TANGENT predictor types are special use capabilities cur-
rently under development.

BEGIN LOADSTEP PREDICTOR

TYPE = <string>EXTERNALIEXTERNAL_FIRSTITANGENT

END [LOADSTEP PREDICTOR]

The tangent predictor is selected with the TANGENT option, which is useful in combination with
the tangent preconditioner. This type of predictor uses the tangent preconditioner to estimate the
next load step's solution.

The other two predictor types use the solution from a file to predict the solution at new load steps.
For instance, the external predictor file can come from the results output of a previous model run
that included the command OUTPUT EXTERNAL PREDICTOR VARIABLES in the output block,
i.e..

BEGIN RESULTS OUTPUT

OUTPUT EXTERNAL PREDICTOR VARIABLES

END [RESULTS OUTPUT]

If you would like to try the external predictor, please contact Sierra support for more information.
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Chapter 10

Total Lagrange

Total Lagrangian [1] formulations are written in terms of Lagrangian measures of stress and strain,
where derivatives are taken with respect to the Lagrangian or material coordinates. This differs
from the approach used in most other element formulations in the code including the uniform
gradient hex, which computes derivatives with respect to the Eulerian or spatial coordinates. The
currently implemented finite element topologies for the total Lagrange section are the 8-noded
hexahedral, 20-noded hexahedral, 27-noded hexahedral, 13-noded pyramid, 4-noded tetrahedral,
10-noded tetrahedral, and 15-noded wedge elements.

BEGIN TOTAL LAGRANGE SECTION <string>section_name

FORMULATION = <string>FULLY_INTEGRATEDI

COMPOSITE_TET

(FULLY_INTEGRATED)

STRAIN INCREMENTATION = <string>

STRONGLY_OBJECTIVEI

LOGARITHMIC_MAPPING

(LOGARITHMIC_MAPPING)

CUBATURE DEGREE = <real>degree

VOLUME AVERAGE J = <string>ONIOFF(OFF)

END [TOTAL LAGRANGE SECTION <string>section_name]

The defaults for the FULLY_INTEGRATED formulation are:

BEGIN TOTAL LAGRANGE SECTION <string>section_name

FORMULATION = FULLY_INTEGRATED

STRAIN INCREMENTATION = LOGARITHMIC_MAPPING

CUBATURE DEGREE = 3

VOLUME AVERAGE J = OFF

END [TOTAL LAGRANGE SECTION <string>section name]

The defaults for the COMPOS I TE_TET formulation are:

BEGIN TOTAL LAGRANGE SECTION <string>section name

FORMULATION = COMPOSITE_TET
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STRAIN INCREMENTATION = LOGARITHMIC_MAPPING

CUBATURE DEGREE = 2

VOLUME AVERAGE J = ON

END [TOTAL LAGRANGE SECTION <string>section_name]



10.1 Formulation

FORMULATION = <string>FULLY_INTEGRATEDI

COMPOSITE_TET(FULLY_INTEGRATED)

The FORMULATION command defaults to the FULLY_INTEGRATED formulation for the given fi-
nite element topology. For the 10-noded tetrahedral topology, the COMPOSITE_TET option exists,
which uses a piecewise linear nodal basis instead of the standard quadratic nodal basis. For more
information on the COMPOS I TE_TET option please consult the Sierra/SM User's Manual chapter
on Elements.
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10.2 Strain Incrementation

STRAIN INCREMENTATION = <string>STRONGLY_OBJECTIVE1

LOGARITHMIC_MAPPING(LOGARITHMIC_MAPPING)

In the total Lagrange formulation, the deformation gradient is always calculated as the derivative
of the current configuration with respect to the reference configuration,

axn+1Fii±i _  ax • (10.1)

It follows that the incremental deformation gradient is defined as the deformation gradient between
the configurations at times n and n + 1 and can be written in terms of Fn and Fn+i,

fn-Fi = Fn+1Fn-1. (10.2)

The STRAIN INCREMENTATION command is then specific to hypoelastic material models, that is,
models that use the rate of deformation to increment the stress. Two approaches are available: the
STRONGLY_OBJECTIVE option in the context of the total Lagrange formulation mirrors what is
found in the SOLID SECTION as described in [2],

1 ,
dn+1 =

At
log (fn+i fi7:+i) ; (10.3)

the LOGARITHMIC MAPPING option is comparatively more accurate in problems with large rota-
tions,

dn+1 = sym —1 log (fn+i)
At

(10.4)
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10.3 Volume Average J

VOLUME AVERAGE J = <string>ON1OFF

This command is used to construct a deformation gradient where the dilatational component is
volume-averaged over the element domain. It is applicable for implicit and explicit problems
employing nearly incompressible material response, such as metal plasticity, and may provide less
stiff solutions in that case. In addition, if this command is ON, then the hydrostatic component of
the stress is also volume averaged. The default setting is OFF.
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10.4 Cubature Degree

CUBATURE DEGREE = <real>degree

This option effectively determines the number of integration points to be employed during numer-
ical integration. For hexahedral elements, CUBATURE DEGREE = 3 corresponds to 8 integration
points, and for tetrahedral elements, CUBATURE DEGREE = 3 corresponds to 5 integration points.

The following topology, formulation, and cubature combinations are available:

ELEMENT
FAMILY

NUM.
NODES FORMULATION

CUBATURE
DEGREE(S)

hexahedron 8 fully_integrated 3
20 fully_integrated 3
27 fully_integrated 3, 5

pyramid 13 fully_integrated 3
tetrahedron 4 fully_integrated 2, 3

10 fully_integrated 2, 3, 4
tetrahedron 10 composite_tet 2, 3
wedge 15 fully_integrated 3
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Chapter 11

Bolt

Warning: The Bolt section is known to have limited functionality in implicit anal-
yses.

BEGIN BOLT SECTION <string>section_name

ATTACHMENT RADIUS = <rea1>radius

SURFACE 1 = <string>surf1

SURFACE 2 = <string>surf2

NORMAL DISPLACEMENT FUNCTION = <string>normFunc

SHEAR DISPLACEMENT FUNCTION = <string>shearFunc

END

The BOLT command block is used to define a two node beam or set of beams representing indi-
vidual bolts or other fasteners. This capability is similar to the SPOT WELD capability. The beam
elements should be meshed such that one beam end node is roughly on surface 1 and the other
beam end node is roughly on surface 2. The beam element does not need to be meshed contiguous
with the surface nodes.

The beam element is attached to all nodes and faces within a specified radius of the beam end
nodes given by the ATTACHMENT RADIUS command. To be valid the bolt must find at least one
face and three nodes within this radius on each surface.

The NORMAL DISPLACEMENT FUNCTION and SHEAR DISPLACEMENT FUNCTION define nor-
mal and shear force displacement functions for the bolt. The normal displacement function defines
tensile response in positive x and compressive response in negative x. The shear displacement
function is radially symmetric and only the positive x portion of the function will be used. The last
point on the shear displacement function and the first and last points on the normal displacement
function implicitly define the bolt failure criteria. Once a bolt fails the strength will ramp down
over 10 steps and the bolt will provide zero force thereafter.

The bolt uses the same combined shear/normal mode failure as does the spot weld as defined in
Equation 11.1. un is the bolt normal extension. The maximum value given for un in the normal
displacement curve is uncrit, but is different for positive and negative displacements. ut is the bolt
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shear deformation. The maximum value given for ut in the normal displacement curve is utcrit.
The value p is a exponent that controls the shape of the failure surface, currently this exponent is
defaulted to 2.

(tin/une„,)P + (tidur,„)P < 1.0 . (11.1)

The original direction defining normal and shear displacement is defined by the bolt element ori-
entation. This normal will rotate based on the rotation of attached faces, not rotation of the bolt
element itself.

Table 11.1 describes the output variables available on the bolt elements.

Table 11.1: Bolt Element Output Variables

Name Description

displacement_

normal

Current normal displacement in bolt

displacement_

shear

Current shear displacement in bolt

force_normal Current normal force in bolt
force shear Current shear force in bolt
bolt_death_

status

One for alive, zero for dead, some value between zero and one when
fading out immediately after hitting the death criteria.
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Chapter 12

Linear Beam

Warning: The Linear Beam section is known to have limited functionality in im-
plicit analyses.

BEGIN LINEAR BEAM SECTION <string>section_name

T AXIS = <real>tx <real>ty <real>tz

AREA = <real>area

Ill = <real>ill

122 = <real>i22

112 = <real>i12(0.0)

J = <real>J

SHEAR AREA 1 = <real>val(AREA)

SHEAR AREA 2 = <real>val(AREA)

END

The LINEAR BEAM SECTION command block is used to specify the properties for a linear
beam element. If this command block is referenced in an element block of three-dimensional,
two-node elements, the elements in the block will be treated as beam elements. The name,
beam_section_name, can be used by the SECTION command line in a PARAMETERS FOR
BLOCK command block.

The beam geometry properties are defined via areas and moments of inertia for the beam section.
The linear beam will behave as a linear elastic element. If a linear beam has a nonlinear material,
only the elastic constants of that material, such as Young's modulus and Poisson's ratio, will affect
the beam behavior.

The beam element is formulated in a local orthogonal RST coordinate system. The R axis of the
beam lies along the beam element. The T axis direction is given in the input deck. If the provided
T axis is not orthogonal to R, the closest vector to T that is orthogonal to R will be used define
the T axis. The S axis is then constructed orthogonal to R and T based on the right hand rule
(The actual method of forming these axes is slightly different from this description.). The T AXI S
command in the linear beam behaves identically to the T AXI s command in the standard beam.
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See the BEAM SECT ION description in the Sierra/SolidMechanics User's Guide for more examples
and discussion on use of the T AX I s command.

The following cross sectional properties are available for linear beams.

• AREA: Cross sectional area used to define axial and shear properties.
• iii: Bending moment of inertia in the T direction of the beam.
• I 2 2: Bending moment of inertia in the S direction of the beam.
• I 12: Product of inertial of the beam for asymmetric sections. This value is by default set to

zero.
• J: Polar moment of inertia used to define beam torsional properties.
• SHEAR AREA 1: Area used for shear resistance in the T direction. If unspecified the cross

sectional area AREA will be used.
• SHEAR AREA 2 : Area used for shear resistance in the S direction. If unspecified the cross

sectional area AREA will be used.

This linear beam is a Timoshenko (also called a Reissner-Mindlin) shear deformable thick beam.
If the thickness is small relative to the length, it behaves like an Euler-Bernoulli beam. The pre-
integrated element stiffness was taken directly from Reference [1].

Note, linear beam elements do not calculate element stress or stress based quantities. Linear beam
elements generate nodal internal forces however no element specific output quantities are currently
available on linear beam elements.
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Chapter 13

Contact

This chapter describes contact features that are not fully tested or are still in development or have

usability issues.
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13.1 Analytic Contact Surfaces

This section describes the input syntax for defining analytic rigid contact surfaces in a Sierra/SM
analysis.

A contact surface can be defined by an analytic surface. An analytic surface is defined by an
algebraic expression, not by a collection of faces derived from elements. For example, an algebraic
expression that defines the surface of a cylinder.

The contact node set can be used in a node to analytic surface interaction. Analytic surface can
only interact with node-based or face-based surfaces, and cannot interact with each other.

Sierra/SM permits the definition of rigid analytic surfaces for use in contact. Contact evaluation
between a deformable body and a rigid analytic surface can be faster than contact evaluation be-
tween two faceted bodies. Therefore, using a rigid analytic surface is more efficient than using a
faceted body to try to approximate a geometric surface.

Several types of analytic surfaces definitions are available.

13.1.1 General Analytic Surfaces

Defining a general analytic body is somewhat involved. First the mathematical description of the
body must be input at the sierra scope:

BEGIN ANALYTIC SURFACE <string>geomName

ORIGIN = <real>Ox <real>0y <real>Oz

RAXIS = <real>Rx <real>Ry <real>Rz

SAXIS = <real>Sx <real>Sy <real>Sz

STARTING POINT = <real>start r <real>start s

CIRCLE

<real>p2r <real>p2s <real>p3r <real> p3s

LINE = <real>p2r <real>plr

REVOLVE = <real>start_theta <real>end_theta

TRANSLATE = <real>start_t <real> end_t

END

The analytic surface is created by defining a two dimensional set of lines and then extruding or
revolving those lines to create a three dimensional surface.

The ORIGIN command defines the XYZ coordinates of the origin of the local two dimensional
RS coordinate system. The RAXIS and SAXIS commands define the R and S axes for the two
dimensional coordinate system. If R and S are not fully orthogonal as input SAXI S will be orthog-
onalized against RAXI s. A T axis is also defined that is orthogonal to both R and S and obeys the
right hand rule.

Exactly one STARTING POINT command must be placed in the command block. The starting
point command gives the coordinates for the first RS line segment point. Subsequent lines and
curves are added by providing LINE and c IRCLE commands. The LINE command creates a new
linear line segment from the end of the last line segment or the starting point to the provided
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point. The c IRCLE command creates a new curved line segment. The c IRCLE command creates

a circular arc going though the end of the last line segment or starting point and the two provided

points. The circular arc will end at the last provided point p3.

Once all line segments are defined in RS coordinates, those line segments can be turned into a three

dimensional body. The REVOLVE command revolves a set of lines about the R axis. The start angle

and end angle for the revolve are specified in degrees with start_theta and end_theta. The

zero degree line for theta is the S axis. The TRANSLATE commands extrudes the two dimensional

line segments into a three dimensional surface. The extrusion is along the T axis starting from

start_t and ending at end_t. Exactly one REVOLVE or one TRANSLATE command must be

specified in the ANALYTIC SURFACE command block.

The geometry for the rigid body is defined at the BEGIN SIERRA scope. the rigid surface itself

is input into the contact scope via the ANALYTIC GENERAL SURFACE command block inside the

BEGIN CONTACT DEFINITIONSCON:

BEGIN ANALYTIC GENERAL SURFACE <string>surfName

ANALYTIC SURFACE = <string>geomName

REFERENCE RIGID BODY = <string>rbName

END

The ANALYTIC GENERAL SURFACE command block creates an analytic surface named

surfName. The name sur fName can be referenced when defining interactions between contact

surfaces. The geomName string in the ANALYTIC SURFACE command references the name of an

analytic geometry defined via the ANALYTIC SURFACE command block in the sierra scope.

Optionally the analytic surface can be associated with a rigid body, for information on rigid bodies

see User's Manual. If an analytic surface is associated with a rigid body, the surface will translate

and rotate along with the rigid body. Additionally any contact forces applied to the analytic surface

will be assembled to the rigid body reference node causing the rigid body to move.

The VISUALIZE CONTACT FACET s option (See User's Manual) can be used to help confirm that

analytic rigid surfaces are being defined as expected. When using the visualize facet option, general

analytic surfaces will be represented by an approximate faceted surface in the output meshes.

Example: The example below defines an analytic cylinder. The cylinder is centered at ( 0 . 0 ,

0 . 0 , 0 . . The center axis of the cylinder lies along the z axis. The cylinder has a radius 1 . 0

and length of 10 . 0 . The cylindrical surface is defined by creating a line in RS space and then

revolving that line about the T axis.

The cylinder is attached to a rigid body b 1 o c k_1 0 0 0 , the analytic cylinder around block_l 0 0 0

impacts the meshed exterior surface of finite element block block_1.

BEGIN SIERRA

BEGIN ANALYTIC SURFACE axleGeom

ORIGIN = 0.0 0.0 0.0

RAXIS = 1.0 0.0 0.0

SAXIS = 0.0 1.0 0.0
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STARTING POINT = -5.0 1.0

LINE = 5.0 1.0

REVOLVE = 0.0 360.0

END

BEGIN RIGID BODY axleRB

END

BEGIN SOLID SECTION axleSect

RIGID BODY = axleSect

END

BEGIN FINITE ELEMENT MODEL meshl

BEGIN PARAMETERS FOR BLOCK block_1

END

BEGIN PARAMETER FOR BLOCK block_1000

SECTION = axleSect

END

END

BEGIN PRESTO PROCEDURE pl

BEGIN PRESTO REGION rl

BEGIN CONTACT DEFINITION cl

BEGIN ANALYTIC GENERAL SURFACE axleSurf

ANALYTIC SURFACE = axleGeom

REFERENCE RIGID BODY = block_1000

END

CONTACT SURFACE block_1_surf CONTAINS block 1

BEGIN OUTPUT OPTIONS

AREA UPDATE FREQUENCY = <integer>numStep(1000)

END

BEGIN ENFORCEMENT OPTIONS

CONTACT FORCE PREDICTOR = OFFION(ON)

END

BEGIN INTERACTION

MASTER = axleSurf

SLAVE = block_l_surf

FRICTION MODEL = frictionless

END

END

END
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END

END

13.1.2 Plane

BEGIN ANALYTIC PLANE <string>name

NORMAL = <string>defined_direction

POINT = <string>defined_point

REFERENCE RIGID BODY = <string>rb_name

END [ANALYTIC PLANE <string>name]

Analytic planes are not deformable and two analytic planes cannot interact with each other through

contact. The ANALYTIC PLANE command block for defining an analytic plane begins with the

input line shown above:

The string name is a user-selected name for this particular analytic plane. This name is used to

identify the surface in the interaction definitions. The string de fined_cli rect ion in the NORMAL

command line refers to a vector that has been defined with a DEFINE DIRECTION command line;

this vector defines the outward normal to the plane. The string defined_point in the POINT

command line refers to a point in a plane that has been defined with a DEFINE POINT command

line. The plane is infinite in size. The body the plane is contacting should initially be on the

positive outward normal side of the plane. See User's Manual for more information on defining

points and directions.

The REFERENCE RIGID BODY command can be used to connect the analytic plane to the rigid

body block named by rb_name. If the rigid body block rotates or translates, the analytic contact

plane will rotate and translate with it. The REFERENCE RIGID BODY option only works with the

Dash search option.

13.1.3 Cylinder

BEGIN ANALYTIC CYLINDER <string>name

CENTER = <string>defined_point

AXIAL DIRECTION = <string>defined_axis

RADIUS = <real>cylinder_radius

LENGTH = <real>cylinder_length

CONTACT NORMAL = <string>OUTSIDE1INSIDE

END [ANALYTIC CYLINDER <string>name]

Analytic cylindrical surfaces are not deformable; they cannot be moved, and two analytic cylindri-
cal surfaces will not interact with each other.

The string name is a user-selected name for this particular analytic cylinder. This name is used to

identify the surface in the interaction definitions. The cylindrical surface has a finite length. The

center point of the cylinder and the direction of the radial axis of the cylinder are defined by the

CENTER and AXIAL DIRECTION command lines, respectively. The string de f ined_point in the

CENTER command line refers to a point that has been defined with a DEFINE POINT command

line; the string defined_axi s in the AXIAL DIRECTION command line refers to a direction
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that has been defined with a DEFINE DIRECTION command line. See User's Manual for more

information on defining points and directions.

The radius of the cylinder is the real value cylinder_radiu a specified with the RADIUS com-

mand line, and the length of the cylinder is the real value cylinder_length specified by the

LENGTH command line. The length of the cylinder (cylinder_length) extends a distance of

cylinder_length divided by 2 along the cylinder axis in both directions from the center point.

The CONTACT NORMAL command defines whether the normal of the contact cylinder points out-

ward or inward.

CONTACT NORMAL = OUTSIDE I INSIDE

13.1.4 Other Analytic Surface Options

BEGIN OUTPUT OPTIONS

ARS NODAL AREA UPDATE FREQUENCY = <integer>va1(1)

CONTACT STATUS TYPE = JASIDEBUG (JAS)

END

ARS CONTACT OUTPUT = OFFION(OFF)

The nodal area update frequency is a performance option to control how often the ARS surface

normals are updated. For a static or semi-static solution increasing this value may increase perfor-

mance at the potential trade off of a inaccuracy in frictional quantities.

The CONTACT STATUS TYPE controls if the nodal output variable contact_status is written

based on JAS conventions (0 not on surface, 0.5, on surface not in contact, 1.0 sliding, -1.0 sticking)

or some other convention.

The ARS CONTACT OUTPUT command controls whether ARS specific detailed output variables

are computed or not.
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13.2 Implicit Solver Control Contact Options

BEGIN CONTROL CONTACT

CONTROL SUBSET = <list>

controlTypes(ADAGIO, ARS, JAS)

END [CONTROL CONTACT]

The CONTROL SUBSET command can be used to cause a control contact block to only apply to
some contact enforcement types. The options to the command are ADAGIO to control kinematic
and augmented Lagrange contact, JAS to control JAS mode contact, and ARS to control analytic
rigid surface contact. By default, the control contact block applies to all three contact types. Use
of the control subset logic may be useful if it is desired to have the different enforcement types use
different control contact option sets.

The CONTROL CONTACT block is described in [1].

The AREA UPDATE FREQUENCY is a performance option used to control how often the analytic
contact surfaces update the local areas and normal directions. Updating these values more fre-
quency (lower numStep) may lower performance but yield greater accuracy (especially in derived
output quantities such as contact traction).

If the CONTACT FORCE PREDICTOR option is on the previous step contact forces will be used as
an initial guess to the current step contact forces. This could improve results if the contact forces
are very stable step to step or make results worse if the contact forces are highly volatile. The
default value for this option is ON as ARS contact is often used to model mostly static contacts.
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Chapter 14

J-Integrals

Sierra/SM provides a capability to compute the J-integral via a domain integral.

Known Issue: Currently, the J-Integral evaluation capability is based on assump-
tions of elastostatics and a stationary crack, and is only implemented for uniform
gradient hex elements.

J is analogous to G from linear elastic fracture mechanics (-671 1 Sa) and is the driving force on the
crack tip of length a [1, 2]. Crack propagation occurs when J(a) R(a), where R(a) is the material
resistance. For constant R, the resistance is often termed Jc. In the reference configuration, the
vector form of the J-integral in finite deformation [3] is

J = J EN dA (14.1)
ro

where E = W I — FT P is called the Eshelby energy-momentum tensor [4]. W is the stored energy
density in the reference configuration and F and P are the deformation gradient and first Piola-
Kirchhoff stress, respectively. Rice [2] realized that because E is divergence-free in the absence
of body forces, one can examine J in the direction of the defect L (unit vector) and obtain a
path-independent integral for traction-free crack faces. J can be written as

J = J L • EN dA (14.2)
ro

and interpreted as a path-independent driving force in the direction of the defect. We note that
one can also express E in terms of E, where E = W I — HT P and H = Grad u. Although E is
symmetric and E is not symmetric, they are equivalent when integrated over the body (DivP = 0).
In fact, differences in the energy-momentum tensor stem from the functional dependence of the
stored energy function W. E and E derive from W(F) and W(H), respectively. When integrated,
both collapse to the familiar 2-D relation for infinitesimal deformations.

J = f el • Ends = f (Wni — uoo-iini)ds (14.3)
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14.1 Technique for Computing J

J is often expressed as a line (2D) or surface (3D) integral on a ring surrounding the crack tip.
Defining a smooth ring over which to compute this surface integral and performing projections of
the required field values onto that ring presents many difficulties in the context of a finite element
code.

To compute the J-integral in a finite element code, it is more convenient to perform a volume inte-
gral over a domain surrounding the crack tip. We can then leverage the information at integration
points rather than rely on less accurate projections. To do this, we follow the method described in
[5]. We replace L with a smooth function q. On the inner contour of the domain I-0, q = L. On
the outer contour of the domain Co, q = O. Because the outer normal of the domain M is equal
and opposite of the normal N on Fo, there is a change of sign. For traction-free surfaces, we can
apply the divergence theorem, enforce DivE = 0, and find that the energy per unit length .1 is

J = — i (E : Grad q)dV. (14.4)
no

We can also introduce a correction if we seek to consider cases in which the crack faces, At, + A6,
or "caps", S -0' + S6, of the domain are not traction free. For example, both cases would be satisfied
for a thumbnail crack in a pressure vessel. The correction

J = — i (2 : Grad q)dV — q • HTT dA. (14.5)
no S ~ +s -+A~ +A-o oo o

effectively removes the contribution of the applied tractions and ensures that the integral remains
path independent. We note that the correction is integrated in the reference configuration with ref-
erential traction T. When pressure is applied to St,, S6, At, , or A6, Sierra employs Equation (14.5).

We note that all the field quantities are given via simulation and we choose to define q on the
nodes of the domain qi. We then employ the standard finite element shape functions to calculate
the gradient. We can specify the crack direction L or assume that the crack will propagate in the
direction normal to the crack front —M. For a "straight" crack front, L = —M. If S is tangent
to the crack front and T is normal to the lower crack surface, S x M = T. We note that for
non-planar, curving cracks, M, S, and T are functions of the arc length S. For ease, we employ
the notation N rather than —M. For a crack front So, we can define the average driving force Javg
as

J avg — fso L • NO'.
While the average driving force is useful for interpreting experimental findings and obtaining a
macroscopic representation of the driving force, we also seek to examine the local driving force
J(S). Using the finite element interpolation functions to discretize L through the smooth function
q, we find q = iliqi. For a specific node K, we can define lel = 1 and qi = 0 for all other I ~ K
on So. Note that we still need to specify the function q in the S —T plane from the inner contour
Fo to the outer contour Co. The resulting expression for the approximate, point-wise driving force
at node K on the crack front is

J

jK 
=

.1

fs0 A.Ke • NcIS •

(14.6)

(14.7)
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Again, we note that if the direction of propagation L is taken in the direction of the normal N, the
denominator is fso iedS . More information regarding the point-wise approximation of .11( can be
found in [6, 7].

Additional information on the J Integral capability can be found in [8].
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14.2 Input Commands

Output quantities related to J-integrals may be computed during the analysis by including one or
more J INTEGRAL command blocks in the REGION scope. This block can contain the following
commands:

BEGIN J INTEGRAL <jint_name>

# Definition of integration domain

BLOCK = <string list>blockNames

REMOVE BLOCK = <string list>removeBlocks

ELEMENT = <int_list>elemNumbers

INCLUDE ALL BLOCKS

# integral parameter

CRACK PLANE SIDE SET

CRACK TIP NODE SET =

USE SURFACE FOR EDGE

specification commands

= <string list>side_sets

<string list>node_sets

DIRECTION = OFFION(ON)

CRACK DIRECTION = <real>dir_x

<real>dir_y

<real>dir_z

INTEGRATION RADIUS = <real>int_radius

NUMBER OF DOMAINS = <integer>num_domains

FUNCTION =

PLATEAU1PLATEAU_RAMPILINEAR(PLATEAU)

SYMMETRY = OFFION(OFF)

DEBUG OUTPUT = OFFION(OFF) WITH

<integer>num_nodes NODES ON THE CRACK FRONT

# time period selection commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END J INTEGRAL <jint_name>

The J-integral is performed over a domain defined by a set of elements using the standard element
assignment commands. See User's Manual for details.

A set of parameters must be provided to define the crack geometry used in the calculation of the J-
integral. The J-integral command block uses a sideset on one surface of the crack plane behind the
crack tip and a nodeset containing the nodes on the crack tip. Both the CRACK PLANE SIDE SET
and CRACK TIP NODE SET commands are required. These commands specify the names of the
sideset behind the crack tip and the nodeset on the crack tip, respectively.

By default, the direction of crack propagation is computed from the geometry of the crack plane
and tip, as provided in the crack plane sideset and crack tip nodeset (L = N). At locations where
the crack intersects a surface, the computed N is commonly less accurate. At these locations, the
USE SURFACE FOR EDGE DIRECTION = ON command will attempt to improve N by project-
ing it onto the intersected surface. The default is ON, and USE SURFACE FOR EDGE DIRECTION
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= OFF should only be set if the crack tip is known to intersect the surface at a sharp angle. Al-
ternatively, the CRACK DIRECTION command can be used to override the computed direction of
crack propagation (L). This command takes three real numbers that define the three components
of the crack direction vector in the global XYZ coordinate system.

To fully define the domains used for the domain integrals, the radius of the domains and the number
of domains must also be specified. A series of disc-shaped integration domains are formed with
varying radii going out from the crack tip. The INTEGRATION RADIUS command is used to
specify the radius of the outermost domain. The number of integration domains is specified using
the NUMBER OF DOMAINS command. The radii of the domains increase linearly going from the
innermost to the outermost domain. The domains will only include elements that are included in
the overall integration domain defined by the BLOCK command and other related commands.

The weight function q used to calculate the J-integral is specified by use of the FUNCTION com-
mand line. The LINEAR function sets the weight function to 1.0 on the crack front Fo and 0.0 at
the edge of the domain co, int_radius away from the crack tip. The PLATEAU function, which
is the default behavior, sets all values of the weight function to 1.0 that lie within the domain of
integration and all values outside of the domain are set to 0.0. This allows for integration over a
single ring of elements at the edge of the domain. The third option for the FUNCTION command is
PLATEAU_RAMP, which for a single domain will take on the same values as the LINEAR function.
However, when there are multiple domains over the radius int radius, the lith domain will have
weight function values of 1.0 over the inner (n-1) domains and will vary from 1.0 to 0.0 over the
outer nth ring of the domain. These functions can be seen graphically in Figure 14.1.

We note that in employing both the PLATEAU and the PLATEAU_RAMP functions, one is effectively
taking a line integral at finite radius (albeit different radii). In contrast, the LINEAR option can be
viewed as taking the lim Fo —> 0+. If the model is a half symmetry model with the symmetry plane
on the plane of the crack, the optional SYMMETRY command can be used to include the symmetry
conditions in the formation of the integration domains and in the evaluation of the integral. The
default behavior is for symmetry to not be used.

The user may optionally specify the time periods during which the J-integral is computed. The
ACTIVE PERIODS and INACTIVE PERIODS command lines are used for this purpose. See User's
Manual for more information about these command lines.
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shown for domain 5.
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14.3 Output

Many variables are generated for output when the computation of the J-integral is requested. The
average value of J for each integration domain is available as a global variable, as described in
Table 14.1. The point-wise value of J at nodes along the crack for each integration domain is
available as a nodal variable, as shown in Table 14.2. Element variables such as the Eshelby
energy-momentum tensor and fields defining the integration domains are also available, as listed
in Table 14.3.

The DEBUG OUTPUT command can be used to generate output data for debugging the J-
integral. If the DEBUG OUTPUT = ON1OFF (OFF) WITH <integer>num_nodes NODES ON
THE CRACK FRONT line command is set to ON, the weight functions, q, will be output for each
node-based J value that is calculated. The user must specify num_nodes, which represents the
number of nodes along the crack front. An internal check is performed during problem initializa-
tion that will verify that the number of nodes specified by the user on the command line matches
the number of nodes associated with the crack front.

Warning: Using the DEBUG OUTPUT command line can potentially result in an
extremely large output file because every node in the integration domain will now
compute and store (NumNodeOnCrackFront + 1) * NumDomains weight function
vectors. This can also potentially exhaust the available memory on the machine.
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14.4 Required Discretization

In order to enable the correct construction of the test function qi, the hexahedral mesh should be
orthogonal to the crack front. An orthogonal mesh will ensure that the elements are not skewed
along the crack front. Because these elements will experience large deformation during crack-tip
blunting, well-formed elements increase the accuracy of the solution. We note that this capability
is not specific to crack front nodes. Any ellipsoidal surface with a constant bias will generate
skewed elements.

In addition, an orthogonal mesh will ensure that the location of a point-wise surface integral will be
a closest point projection from the crack-tip node. Consequently, any surface integral via a domain
integral at a node along the crack front will be most accurate if the specified radius is a minimum.
In addition to increasing the accuracy of point-wise evaluations of the J-integral, an orthogonal
mesh will also ease the search algorithm for point-wise evaluations. The search is performed
along the normal to the crack front. If the mesh is aligned with the normal, the specification of
q is straightforward. Misalignment can result in a "checker boardine of the integration domains
which presents the possibility that qi will always be one and the J-integral will be zero. Future
work may generalize the calculation of .IK , but we are currently limited to hexahedra. Given these
requirements, we collaborated with the Cubit team to add the capability to generate meshes that
are orthogonal to a surface. The Cubit team implemented the command

adjust boundary surface AA snap to normal curve A

which enables the generated elements on surface AA to be "snapped" normal to the curve A. For
example, one may choose to sweep adjacent squares along the crack front curve A. For crack
plane surfaces AA and AB that are joined by the crack front curve A, one would issue the following
commands in Cubit

surface AA AB scheme map

mesh surface AA

node in curve A position fixed

adjust boundary surface AA snap_to_normal curve A

mesh surface AB

node in curve A position fixed

adjust boundary surface AB snap_to_normal curve A

fixed curve A

to obtain an orthogonal mesh. The next step is to sweep that mesh "up" and "dowe from the crack
surface. To ensure that Cubit employs a "simple sweep so that the search is consistent through
the direction of the sweep, we use

volume ABC scheme sweep source surface AA target

surface AC

propagate_bias autosmooth_target off sweep_smooth

linear

sweep_transform translate

for volume ABC. Because proper mesh construction ensures accuracy and smoothness in .IK , we
encourage analysts to use the snap_to_normal and autosmooth_target off options.
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14.5 Results and History Output

This section lists output variables for J-Integral.

• Table 14.1 Global Variables for J-Integral
• Table 14.2 Nodal Variables for J-Integral
• Table 14.3 Element Variables for J-Integral

Table 14.1: Global Variables for J-Integral

Variable Name Type Comments
j_average_

< j int_name>

Real [] Average value of the J-integral over the
crack. Array sized to number of integration
domains and numbered from inner to outer
domain. < j int_name> is the name of the
J INTEGRAL block.

Table 14.2: Nodal Variables for J-Integral

Variable Name Type Comments
j_< j int_name> Real [ ] Point-wise value of J-integral along crack.

Array sized to number of integration do-
mains and numbered from inner to outer do-
main. < j int_name > is the name of the
J INTEGRAL block.

Table 14.3: Element Variables for J-Integral

Variable Name Type Comments
energy_

momentum_

tensor

FullTen36 Energy momentum tensor

integration_

domains_

< j int_name>

Integer [] Flag indicating elements in integration do-
mains. Set to 1 if in domain, 0 otherwise.
Array sized to number of domains and num-
bered from inner to outer domain < j int_
name> is the name of the J INTEGRAL
block.
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Chapter 15

Nonlocal Regularization

Known Issue: Each nonlocal block must be uniquely paired with a material. A
single material cannot have local and nonlocal blocks. Future work will generalize
the methodology.

Using material models that employ strain softening to capture the micromechanics of the failure
process will result in mesh-dependent solutions. Fundamentally, the partial differential equation is
changing character and the problem becomes ill-posed (for both elliptic and hyperbolic systems).
There are multiple methodologies to regularize the solution and nonlocality has been employed to
converge to a single solution from a multiplicity of solutions.
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15.1 Variational nonlocal rnethod

In the vein of nonlocality, a variational nonlocal method was derived such that one can identify the
state variable that controls softening Z and pose a variational principle such that the stored energy
is dependent on a nonlocal state variable Z. At a point, a Lagrange multiplier enforces 2 = Z.
When we minimize and discretize, however, we derive an L2 projection for the "coarse' 2 and
the balance of linear momentum for the "fine" scale. If we assume that the basis functions for
the coarser discretization D are constant and discontinuous, we obtain the nonlocal 2 as a simple
volume average of Z.

- 1
Z 

fDdV
  Zd17 (15.1)

In this particular case, less is more. We do not want to recover the mesh-dependent solution
inherent in Z with a Z. Instead, we seek to specify an additional discretization (length scale)
independent of the discretization for Z. Because Z is just an average, we can consider a coarse
domain to be a patch of fine scale elements having volume V that is consistent with a prescribed
length scale l where V = P. For example, one might correlate the mesh dependence in the solution
with scalar damage 0. The variational nonlocal method would construct a for each nonlocal
domain D. The stress would then evolve from 0 and not 0.
Domain decomposition algorithms are invoked to construct coarse scale domains of common vol-
ume. For parallel execution, each processor (having nonlocal element blocks) is partitioned during
initialization. Nonlocal averages are calculated on the processor and no communication is neces-
sary between processors.

Warning: Because nonlocal domains are initially decomposed on each processor,
nonlocal geometries will not a) be consistent with different parallel decompositions
and b) admit rebalancing. No infrastructure exists to maintain the character of the
nonlocal domains during rebalancing.
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15.2 Nonlocal partitioning

Because communication in parallel processing scales with the surface area of the domain, we be-
lieved that software designed with the intent of limiting communication would be ideal for appli-
cation to nonlocal regularization. Hence, graph-based (METIS, Zoltan Hypergraph) and geometric
(Zoltan Recursive Coordinate Bisection, Zoltan Recursive Inertial Bisection) decomposition algo-
rithms were implemented and available for the analyst. Figure 15.1 illustrates the Zoltan partition-
ing methodologies for a circular region surrounding a sharp crack tip. We note that non-contiguous
domains can occur in graph-based methodologies. For these reasons, ZOLTAN_RCB was selected
to be the default partitioning scheme.

• • •
Zoltan RCB Zoltan RIB Zoltan Hypergraph

Figure 15.1: Illustration of 400 nonlocal partitions at a sharp crack tip using Zoltan Recursive
Coordinate Bisection (RCB), Zoltan Recursive Inertial Bisection (RIB), and Zoltan Hypergraph
partitioning methodologies. Note that Zoltan Hypergraph can generate non-contiguous domains.
The default partitioning methodology in Sierra is Zoltan RCB.

Initial findings employing geometric partitioning illustrated a sensitivity to domain shape. A re-
examination of Figure 15.1 will reveal that the aspect ratios of the domains are significant. Because
we are aligning the evolution of a nonlocal variable with the nonlocal domain shape, domains of
increasing aspect ratio result in anisotropic evolution. Although other researchers have developed
methods for domain decomposition that focus on domain shape [1], we gravitated towards clus-
tering algorithms and the resulting isotropy [2]. Figure 15.2 illustrates the mesh, grid, and result
of k-means clustering, a centroid Voronoi Tessellation (CVT). Given a body on processor with
mesh size h, we overlay a grid with uniform cell size c. We then find points both inside (red) and
outside (blue) the body. After calculating the number of nonlocal volumes N for a body of volume
B through N = BI13, we seed the centroids of the nonlocal domains through Zoltan RCB. K-means
clustering of points inside the body evolves the locations of the centroids via Lloyd's algorithm.
The algorithm will converge to a CVT, independent of the FE discretization. The tolerance for
convergence tol is specified as a fraction of the cell size c. The nonlocal domains are then popu-
lated by each element's proximity to the nearest CVT centroid. The resulting nonlocal domains are
illustrated in Figure 15.2. We note that the nonlocal domain size is only illustrative. Nonlocality
in damage, for example, would require a smaller length scale l resulting in a finer discretization of
Voronoi polygons.
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initial
mesh ... 

.......... . •

h = 125 pm

grid points
inside body

uniform  
grid for  c — 100 pm
k-means  
clustering   

grid points
  outside body

nolocal
domains
(CVTs)

l = 1300 pm

Figure 15.2: Nonlocal domains derive from a Centroidal Voronoi Tessellation (CVT). A parti-
tioned mesh for parallel processing with element size h determines the boundaries of a uniform
grid with cell size c. K-means clustering evolves a set of N centroids into a CVT.
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15.3 Command summary

In the specification of the block, one can invoke nonlocality in a state variable Z through

begin parameters for block block_1

material ductile_metal

solid mechanics use model elasto_thermo_visco_poro_plasticity

section = solid_l

NONLOCAL REGULARIZATION ON <string>varName WITH LENGTH SCALE =

<real>length [AND STAGGERING]

NONLOCAL REGULARIZATION PARTITIONING SCHEME =

METISIZOLTAN_HYPERGRAPH1ZOLTAN_RCBIZOLTAN_RIBIKMEANS (ZOLTAN_RCB)

# Options for k-means clustering

NONLOCAL REGULARIZATION KMEANS CELL SIZE = <real>cell_size

NONLOCAL REGULARIZATION KMEANS MAXIMUM ITERATIONS = <int>max_iter

NONLOCAL REGULARIZATION KMEANS TOLERANCE = <real>tol

end parameters for block block_1

where the varName is the state variable Z to be averaged and length defines the nonlocal vol-
ume V = length3. The k-means clustering employs a uniform grid having a size cell_size
and tolerance for convergence tol. The maximum number of iterations for k-means clustering is
given by max_iter. One can output the partitions through the NONLOCAL_ELEMENT_DOMAIN
element variable. The output of element variables is described in the User's Manual. In ad-
dition, each partition and its volume is noted in the log file. The nonlocal variable 2: can be
output through the element variable NONLOCAL_varName_AVERAGE while the local variable Z
is output through varName. We remind the reader that material points contain both Z and 2.
The energy, stress, and tangent depends on Z. The constitutive update evolves Z. This process,
however, is not employed when using AND STAGGERING. In this specific case, local variables
are averaged after each time step tn and used as the initial conditions for tn+1. Strictly speaking,
AND STAGGERING approximates the variational nonlocal method. A fundamental assumption of
the nonlocal method is that one is employing a constitutive model in which the state variable up-
date is separate from the evaluation of the energy, stress, or tangent. Currently, only one model
in LAME, HYPERELASTIC_DAMAGE, separates these functions. All the other constitutive models,
however, update the internal state variables and the stress simultaneously. In an attempt to employ
the majority of models that do not adhere to this separation, the AND STAGGERING option was
implemented and does regularize the failure process. This approximation to the nonlocal method
is more accurate for small time steps and may require limited hourglass viscosity to stabilize the
evolved perturbations (post bifurcation) in uniform-gradient elements. Although we initially envi-
sioned the AND STAGGERING option to be most applicable to explicit dynamics, simulations with
nonlocal damage evolution for implicit dynamics have illustrated mesh-independent solutions.

Warning: The tangent generated in Adagio currently derives from Z and is local.
Future development will implement a nonlocal, finite-difference tangent.
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Warning: Element death for nonlocal domains is work in progress. Additionally
this capability will not function with 'death on inversion'.
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15.4 Usage guidelines

The nonlocal length scale length l is a material parameter that will set the length scale over which
localization will occur. Although the parameterization of l is indirect, it will control the dissipation
and should have an experimental basis.

For a typical application, the analyst might

1. Identify a constitutive model that captures the failure process. This might include a local
damage model or any model that employs strain softening to facilitate strain localization.

2. Conduct mesh-dependent simulations with bulk elements of size h to understand potential
paths for crack initiation and growth in specimen geometries targeted for parameterizing
constitutive model parameters.

3. Invoke nonlocality through a nonlocal length scale l. Mesh-independent solutions stem from
resolved nonlocal domains where l > 3h. The nonlocal domain size should be small com-
pared to the relevant dimensions (features) of the body.

4. Specify KMEANS partitioning. Choose the cell size c such that it is small compared to the
nonlocal length scale. We recommend -201 < < 110 for the clustering algorithm to sample
between — 1000 and — 8000 points per nonlocal domain and obtain a converged CVT. Please
note that memory requirements will scale geometrically with the cell size. One can easily
run out of memory on a cluster given decrements in the cell size. Candidate values for
convergence and the maximum number of iterations are 0.02 and 256, respectively. Because
the clustering process is only performed during the initialization of the simulation, decreased
tolerances and increased iterations are not cost prohibitive.

5. Inspect the character of the nonlocal volumes through NONLOCAL_ELEMENT_DOMAIN and
determine whether or not there are sufficient nonlocal volumes per partition for parallel pro-
cessing. Because the nonlocal domains are formed on processor, processor boundaries rep-
resent nonlocal domain boundaries. One can enable greater smoothness in the nonlocal
response through the mitigation of processor boundaries.

6. Incorporate nonlocality into the fitting process. The fitting process may not be unique in that
the same far-field response might be obtained from multiple combinations of both l and the
material parameters that govern the failure process.

7. Understand the impact of l. If l is too large, the failure process will be "lumped" over a large
region resulting in a non-smooth response. Please consider refitting model parameters with
smaller values of l (and h) to obtain the localized nature of the failure process.

8. Explore component or system level geometries with nonlocality. Refine the mesh to ensure
that the far-field predictions are indeed mesh independent and that the process zone that
evolves from the given micromechanics is resolved.

9. Reflect on the fields employed for model parameterization and the fields evolving in compo-
nent and system level models. Contrast the evolution of local field variables governed by the
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mesh discretization with the nonlocal variable governed by the CVT discretization. If possi-
ble, align field evolution in component/system geometries with field evolution in specimen
geometries. Disparities may drive the need for additional calibration experiments.

Although these usage guidelines have not focused on incorporating stochastic processes, one may
sample distributions in material parameters. The inclusion of a method for regularization enables
such findings in that the mesh-dependence associated with fracture/failure is not convoluted with
a stochastic representation of the micro mechanical process.
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*°
Explicit Only

Chapter 16

POD

Proper Orthogonal Decomposition (POD) and Explicit Control Modes (ECM, refer to Chap-
ter 7.4.3) should have almost the same name according to the rule

The name of a method should describe what is done, not how it is done.

A difference from ECM is that POD does not require a coarse finite element mesh. POD is intended
for explicit analyses in which the time step is too small, and constructing a coarser mesh for ECM
is unfeasible.

Warning: POD is an experimental analysis technique.
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16.1 Time Step Control Commands

The larger the time step is, the greater the mass scaling. Part of the Cylinder With Legs test input

file invokes POD and controls the way that it works.

BEGIN PARAMETERS PRESTO REGION

#USER TIME STEP = 1.2e-08

END PARAMETERS PRESTO REGION

BEGIN PROPER ORTHOGONAL DECOMPOSITION

NUMBER OF POD MODES = 21

SNAPSHOTS INTERVAL = 405

POD MODES COMPUTATION TIME STEP = 1.e-4

ENERGY PERCENTAGE = 99.999

POD FILTER = On

MODE REFRESH = Off

#USER FILTER TIME STEP = 1.2327e-08

USER FILTER TIME STEP = 6.1635e-08 #5X

END PROPER ORTHOGONAL DECOMPOSITION

The USER TIME STEP overrides the element time step, including any increase in the time step

due to POD.

The initialization needs the NUMBER OF POD MODES for post-processing. It is the number of

fields to allocate that will store POD modes. The way that POD is set up at this time, this is also

the number of snapshots and the number of eigenvalue eigenvector pairs.

SNAPSHOTS INTERVAL is the number of time steps taken between snapshots used to build the

correlation matrix. It is not the number of time steps between adding a POD vector.

POD MODES COMPUTATION TIME STEP is the time at which Adagio POD is activated.

ENERGY PERCENTAGE is percentage that the sum of the eigenvalues used for the ECM/POD run

accounts for with respect to the sum of the total eigenvalue spectrum. It is related to the kinetic

energy of the system, but is not the ECM energy percentage [1].

POD FILTER activates the high frequency mass scaling. If OFF, then the simulation is equivalent
to a simulation without ECM/POD.

MODE REFRESH This refreshes the number of POD modes throughout the simulation.

USER FILTER TIME STEP This is the user defined time step.

In theory the Lanczos algorithm provides the time step, but this has not been implemented.

The Plastic Cylinder test of POD activates the MODE REFRESH.

MODE REFRESH=ON

Snapshots are stored throughout the simulation. At every POD MODES COMPUTATION TIME

STEP, 10-4 seconds here, the POD modes are updated using the new information.
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Chapter 17

RKPM

Warning: RKPM is a capability still in the development stages. This capability is
not yet recommended for general use.
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17.1 Formulation

This chapter describes the Reproducing Kernel Particle Method (RKPM) capability. RKPM is a
meshfree method that can be constructed such that the approximation can be tailored for arbitrary
order of completeness and smoothness [1, 2], using only a scattered set of points. This method
reduces the tie between quality of the discretization and quality of the approximation, and is par-
ticularly effective for large deformation problems. Currently the RKPM formulation in Sierra/SM
uses a Lagrangian description, and is a robust method for modeling large deformation problems
where traditional FEM methods may experience mesh distortion issues. Additionally, under the
appropriate formulation, it is also very effective at modeling extremely large deformation problems
such as fragment/impact/penetration, which is a long term goal of the implementation.

The discrete description of a solid is achieved simply through only a set of nodes, and needs no
other information such as a mesh. Each node is associated with a shape function with compact
support, with overlap over neighboring nodes naturally determining connectivity. The RKPM
shape functions are constructed as follows.

Let the closed domain Õ c Rd with dimension d be discretized by a set of NP nodes focjlxi E yy_Pi
The nth order RK approximation of a function u(x) in Õ denoted by Ili (X) is constructed by the
product of a kernel function Ia(vc — x1) with compact support measure a, and a correction function
composed of a linear combination of basis functions in the following form [1]:

NP NP

1.1
h
(X) = E(x — x ,(x) ) (1(x — x i)ti E 1(0c)u1.

1.1 laln 1.1
(17.1)

Here we have introduced the multi-index notation a =(al, a2, . . . , ad) with the length of a de-
fined as lal 

= Ei_1 a xa xce1 x a2 2 x dad L a
t) 

—
baia2...ad'

Da E 
a2

2 dad axial ax2a2 • axdad and u I are the coefficients of approximation. The term

{(x — xr)a}lai<n is the set of basis functions, and fba(x)liai<T, are coefficients of those basis functions.
The kernel function Ia(oc — x1) determines the smoothness of the approximation functions, for ex-
ample, a cubic b-spline function gives C2 continuity. The type of kernel function Oa can be chosen
by the user. The subscript "a" denotes a measure of influence of the kernel function. The measure
is normalized by the minimum nodal spacing, such that a = 1 gives the nodal spacing. The details
on how to select values of this parameter are given in Section 17.4.

The set of coefficients tba(x)11,1<n are determined by meeting the reproducing conditions

NP

E wi(x)x7 = xa, lal n. (17.2)

With {ba(x)}iai~n obtained from (17.2), the RK shape functions are obtained as

NP

uh(X) = 11-1i(x)tti
I=1

(17.3)
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where

'I` 1(x) = H (0)T M-1 (x)H (x — 1)0 Jot — x 1)
NP

M(x) = H (x — x 1)HT (x — 1)(1)a(x — x1).
1=1

(17.4)

(17.5)

Here the vector HT (x — x1) is the corresponding row vector of {(x — xj)a}w~n and M (x) is
the moment matrix. In this construction, the reproducing conditions (17.2) are met provided the
moment matrix (17.5) is invertible, and this requires (n + d)! 1 n!d! non-collinear points under the
cover Oa so that the reproducing equations are linearly independent [2]. By direct differentiation,
the shape functions also satisfy the property

where /3 is a multi-index.

NP

E rofj(x)x7 = Dpxa , lal n.
1=1

(17.6)
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17.2 Domain integration

Domain integration for meshfree methods is most straightforwardly accomplished using Gaussian
quadrature over background cells. However due to the complexity of the shape functions, high
order quadrature must be employed to ensure sufficient accuracy of the solution [3]. Thus alter-
native approaches have been proposed to avoid the bottleneck of domain integration, and have
been adopted in Sierra/SM. The most effective approach is the stabilized conforming nodal in-
tegration (SCNI) method [4, 5], which has been implemented into Sierra/SM as the primary and
preferred dornain integration method for Lagrangian analysis. This method employs nodal integra-
tion, where derivatives evaluated at the nodes are smoothed over conforming nodal representative
domains The strain smoothing serves to both circumvent zero-energy modes associated with
nodal integration, as well as provide accuracy by providing linear exactness (passes the patch test)
in the Galerkin approximation. The conforming cells required for strain smoothing are simply
the elements in the original mesh before it is converted to a particle description. This approach
ensures stability and accuracy with optimal convergence, and is also efficient as it employs nodal
integration.

While SCNI is an extremely effective technique for Lagrangian analysis, in the presence of frag-
mentation and material separation the construction of conforming cells is prohibitively expensive.
To plan for these future capabilities in Sierra/SM, stabilized non-conforming nodal integration
(SNNI) has been implemented, where the conforming condition is relaxed and strains are smoothed
over simple box cells constructed around the nodes. This techniques ensures reasonable stability
and accuracy, but can suffer from convergence issues due to the failure of the patch test resulting
from the relaxation of conforming conditions. The general framework of variationally consistent
(VC) integration has been introduced [3] which can restore exactness in the Galerkin approxima-
tion, and has been employed for the enhancement of SNNI. The resulting VC-SNNI method (see
Section 17.4) performs nearly identically to SCNI, and has been irnplemented into Sierra/SM.

SCNI and SNNI suppress zero energy modes associated with directly integrating shape functions at
nodal points. However spurious low energy oscillatory modes can still exist in both methods when
the surface area to volume ratio is small, or when the discretization is fine. To alleviate this issue,
an additional stabilization technique has been proposed [6, 7], where the oscillatory modes are
penalized in a form which maintains the accuracy of SCNI when it is employed. It is implemented
into Sierra/SM and the user can choose to use it by specifying a stabilization coefficient.
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17.3 Kinematics for RKPM in SIERRA

For time r to time 1—'1 , objective strain measures are computed with respect to r+112 following [8].
With generalized increments Acr = cr+1 — dr' and AV' = vn+1 — vn , the incremental deformation
gradient GI at node I and its rate HI are computed as

G1 = DIA71
HI = LIA71 + (17.7)
= +

where
NP

(DA./ = E 41(xl)Adji

J=1
NP

(4)i1 = Eqjj j(xl)A1 ji
J=1

(17.8)

Kinematic quantities of interest are the strain increment yI and at node I, strain rate -.),1 and at node
I, and deformation gradient F1 at node I:

= + GT)

•-?y, = (H1 + HT)
NP

(F dij = E jj(MdlE1

J=1

(17.9)

With the Cauchy stress increment Au, computed by LAME based on these quantities, the update
to stress cr7+1 at node I is performed as

(77+1 = Qlo-NT + Au,

Q1 = 14(1- — (17.10)

= (GI — GT)

where Ch is the rotation matrix computed at node I, and cel is the matrix containing the spin tensor
computed at node I.
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17.4 Input format

The following parameters can be defined from the input deck:

BEGIN RKPM SECTION <string> section_name

SUPPORT SIZE = <real> normalized_support

BASIS ORDER = <real>order

KERNEL TYPE = <real>kernel_type

KERNEL SHAPE = <string>SPHERE I BOX

INTEGRATION METHOD = <string>SCNI I SNNI I NSNI I VCSNNI

STABILIZATION COEFFICIENT = <real> coefficient

FORMULATION = <string> LAGRANGIANI SEMI-LAGRANGIAN

QUASI LINEAR = <string>OFFION (OFF)

QUASI LINEAR COEFFICIENT = <real>quasi linear_coefficient

QUASI LINEAR distance = <real>quasi_linear_distance

FRICTIONAL KERNEL CONTACT = <string> OFFION (OFF)

FRICTIONAL COEFFICIENT = <real> friction_coefficient

END RKPM SECTION <string> section_name

• Support Size: This parameter defines the support size of the kernel functions; it controls
the locality of the approximation functions. It is a normalized value with respect to the
distance to the closest neighboring nodes, and should be greater than 1.5, because of the
strain smoothing employed in SCNI and SNNI. For order of approximation (see below)
higher than 1, the support size also needs to be increased by unity for each order. For example
a normalized support size of 1.6 would be acceptable for linear basis, 2.6 for quadratic basis,
3.6 for cubic basis, and so on. Note that because of the possibility of non-uniform nodal
spacing, larger values may be required in more non-uniform discretizations.

• Basis Order: This parameters controls what order of polynomial the approximation space
is built upon. RKPM is constructed to reproduce any polynomial function of a given order
exactly in the entire domain. The order of reproduction dictates at what rate the solution
will converge in the energy norm. A higher basis order will yield better accuracy and faster
convergence, but will also increase computational expense.

• Kernel Type: The approximation functions are built from a kernel function and a correction
function. The correction function is automatically calculated to meet the required reproduc-
ing conditions, but the kernel function can be chosen by the user. The smoothness of the
kernel function directly dictates the smoothness of the approximation field. In this imple-
mentation, different orders of B-Splines are used. This parameter can be chosen between 1
(linear B-Spline, C° continuity) and 5 (quintic B-Spline, C4 continuity). In problems where
the solution is known to be smooth, higher order continuity is more desirable.

• Integration Method: Several RKPM integration schemes are under development in Sier-
ra/SM. Currently, Stabilized Conforming Nodal Integration (SCNI) is the best option. In this
case, a conforming mesh is necessary to construct the integration cells. If such information
is not available (when the capabilities of the code are extended), Stabilized Non-Conforming
Nodal Integration (SNNI) or its VC counterpart, VC-SNNI, can be used instead. For more
details, see section 17.2.
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• Stabilization Coefficient: This is an optional parameter, and should stay in the range between
0 and 1. If omitted, no additional stabilization is performed. If a coefficient is specified it
will be used to perform additional stabilization. If it is set to 0.0, the result will be the same
as unstabilized, but the additional stabilization routines will still be called, adding significant
computational expense. Therefore, if no stabilization is required, this parameter should be
omitted.

• Formulation: Not implemented yet. For now, any RKPM analysis is ran using the La-
grangian description. A semi-Lagrangian formulation is planned for future development.
The semi-Lagrangian formulation is better suited to simulations involving very large defor-
mations and material failure.

17.4.1 Converting a mesh to particles

The recommended way to load an RKPM model is to read in a standard hexahedron and/or tetrahe-
dron element mesh and convert the elements to particles at initialization in the region scope using
the BEGIN CONVERSION TO PARTICLES AT INITIALIZATION (see also the Particle Section
command block in Chapter 6 and the peridynamics Chapter 10 of the User's Manual):

BEGIN CONVERSION TO PARTICLES AT INITIALIZATION

BLOCK = <string list>block_names

SECTION = <string>particle_section

END [CONVERSION TO PARTICLES AT INITIALIZATION]

where the BLOCK command specifies which blocks are converted to particles, and SECTION spec-
ifies the peridynamics section.

An alternative way to convert an original mesh to particles is to use the spheregen.py routine.
The following command will convert an Exodusll file, e.g., myfile . g to myfile . sphere . g:

spheregen.py --nodes_as_attr myfile.g

Here, the --nodes as attr option embeds the original node locations into the sphere mesh as
attributes, which is required for RKPM. The sphere mesh, myfi 1 e . sphere . g, should then be
specified as the mesh file in the Sierra/SM input deck. In this implementation, the RKPM nodes
are located at the center points of each element constituting the original mesh of the solid. Only
the SNNI integration technique is supported for this option.
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Chapter 18

Material Models

The chapter describes materials available in Sierra that are currently under development.
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18.1 Elastic Orthotropic Damage Model

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC DAMAGE

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> A

#

# Required parameters

#

E11 = <real> E11

E22 = <real> E22

E33 = <real> E33
NU12 <real> v12

NU13 = <real> vo

NU23 = <real> 1123
G12 = <real> g12,

G13 = <real> go

G23 = <real> g23

ALPHAD = <real> ad
BETAD = <real> fld

GAMMAO = <real> yo

J1 = <real> jl

J2 = <real> j2

J3 <real> j3

CN11 = <real> cnll

CN22 = <real> cn22

CN33 = <real> cn33

CS12 = <real> cs12

CS13 = <real> cs13

CS23 = <real> cs23

COORDINATE SYSTEM = <string> coordinate_system_name

#

# Optional parameters

#

ANGLE_1_ABSCISSA = <real>angle_l_abscissa

ANGLE_2_ABSCISSA = <real>angle_2_abscissa

ANGLE_3_ABSCISSA = <real>angle_3_abscissa

ROTATION_AXIS_1 = <real>rotation_axis_1

ROTATION_AXIS_2 = <real>rotation_axis_2

ROTATION_AXIS_3 = <real>rotation_axis_3

ANGLE_1_FUNCTION = <string>angle_l_function_name

ANGLE 2 FUNCTION = <string>angle_2_function name

ANGLE_3_FUNCTION = <string>angle_3_function_name
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E11 FUNCTION = <string>func_name

E22 FUNCTION = <string>func_name

E33 FUNCTION = <string>func_name

NU12 FUNCTION = <string>func_name

NU13 FUNCTION = <string>func_name

NU23 FUNCTION = <string>func_name

G12 FUNCTION = <string>func_name

G13 FUNCTION = <string>func_name

G23 FUNCTION = <string>func name

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE]

The elastic orthotropic damage model is an empirically based constitutive relation that is useful for
modeling polymer matrix composite structures. Refer to SAND2O13-7257 for a full description of
the material model theory and usage.

The command block for an elastic orthotropic damage material starts with the line:

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE

and terminates with the line:

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE]

In the above command block, the required inputs are: two of the five general elastic material
constants, directional properties, and the coordinate system. The following is a brief description of
each input.

• The density of the material is defined with the DENSITY command line.
• The Biot's coefficient of the material is defined with the B I OTS COEFFICIENT command

line.
• Any two of the following elastic constants are required:

• Young's modulus is defined with the YOUNGS MODULUS command line.
• Poisson's ratio is defined with the POISSONS RATIO command line.
• The bulk modulus is defined with the BULK MODULUS command line.
• The shear modulus is defined with the SHEAR MODULUS command
• Lambda is defined with the LAMBDA command line.

• The directional moduli El 1, E22, and E33 are defined with the E11, E22, and E 33 command
lines.

• The directional Poisson's ratios v12, v13, and v23 are defined with the NU12, NU13, and NU23
command lines.

• The directional shear moduli G12, G13, and G23 are defined with the G12, G13, and G23
command lines.

• The specification of the principal material directions begins with the selection of a user
specified coordinate system given by the COORDINATE SYSTEM command line (see below).

• The damage surface evolution terms are given with the ALPHAD and BETAD command
lines.
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• The initial damage threshold is defined with the GAMMAO command line.
• The directional damage surface coefficients with the J1, J2 and J3 command lines.
• The directional normal crack closure coefficients defined with the CN11, CN22 and CN33

command lines.
• The directional shear crack closure coefficients are defined with the CS12, CS13 and CS23

command lines.
• For material orientation definition instructions see the Materials chapter in the Sierra/SM

User's Manual.

Warning: The ELASTIC ORTHOTROPIC DAMAGE model has not been tested in
conjunction with the control stiffness implicit solver block.
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18.2 Karagozian and Case Concrete Model

BEGIN PARAMETERS FOR MODEL KC_CONCRETE

#

# Elastic constants

#

YOUNGS MODULUS = <real> E
POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G
BULK MODULUS = <real> K
LAMBDA = <real> A
TWO MU = <real> 211

#

#

#

COMPRESSIVE STRENGTH = <real>compressive_strength

FRACTIONAL DILATANCY = <real>omega

HARDEN-SOFTEN FUNCTION = <string>harden_soften_function_name

LAMBDAM = <real>lambda_m

LAMBDAZ = <real>lambda_z

MAXIMUM AGGREGATE SIZE = <real>max_aggregate_size

ONE INCH = <real>one inch

PRESSURE FUNCTION = <string>pressure_function_name

RATE SENSITIVITY FUNCTION = <string>rate_function_name

SINGLE RATE ENHANCEMENT = <enum>TRUE1FALSE

TENSILE STRENGTH = <real>tensile_strength

UNLOAD BULK MODULUS FUNCTION = <string>bulk_function_name

END PARAMETERS FOR MODEL KC_CONCRETE

The Karagozian & Case (or K&C) concrete model is an inelasticity model appropriate for approx-
imating the constitutive behavior of concrete. Coupled with appropriate elements for capturing
the embedded deformation of reinforcing steel, the K&C concrete model can be used effectively
for simulating the mechanical response of reinforced concrete structures. The K&C model has
several useful characteristics for estimating concrete response, including strain-softening capabil-
ities, some degree of tensile response, and a nonlinear stress-strain characterization that robustly
simulates the behavior of plain concrete. This model is described in detail in [1].

In the above command blocks:

• Consult the Sierra/SM User's Guide chapter on Material Models for more information on
elastic constants input.

• The compressive strength for a uniaxial compression test is defined with the COMPRESS I VE
STRENGTH command line.

• The tensile strength for the uniaxial tension test is defined with the TENSILE STRENGTH
command line.

• The abscissa of the hardening/softening curve where this curve takes on the value of one is
termed Lambda-M, and it is defined with the LAMBDAM command line (see [1], pg. B-3).

• The abscissa of the hardening/softening curve where this curve takes on the value of zero
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after its peak value has been attained is termed Lambda-Z, and it is defined with the LAMBDAZ
command line. This parameter should satisfy LAMBDAZ > LAMBDAM (see [1], pg. B-3).
This input is Sierra-specific, and differs from the previous PRONTO3D definitions.

• The SINGLE RATE ENHANCEMENT parameter indicates whether the rate enhancement of
the model should be independent of the sign of the deformation. If this parameter is set to
TRUE, the same enhancement function is used for both compression and tension. If it is set to
FALSE, the enhancement function must assign values for both positive and negative values
of strain rate (see [1], pg. B-5). This parameter is also Sierra-specific, and is different from
the previous PRONTO3D definitions.

• The FRACTIONAL D I LATANCY is an estimate of the size of the plastic volume strain incre-
ment relative to that corresponding to straining in the hydrostatic plane. This value normally
ranges from 0.3 to 0.7, and a value of one-half is commonly used in practice.

• The MAXIMUM AGGREGATE SI ZE parameter provides an estimate of the largest length di-
mension for the aggregate component of the concrete mix. The American Concrete Institute
code [2] includes specifications for maximum aggregate size that are based on member depth
and clear spacing between adjacent reinforcement elements.

• The parameter ONE INCH provides for conversion to units other than the pounds/inch system
commonly used in U.S. concrete venues. This parameter should be set to the equivalent
length in the system used for analysis. If centimeters are to be used, for example, then
ONE INCH = 2 . 5 4.

The following functions describe the evolution of material coefficients in this model:

• The function characterizing the enhancement of strength with strain rate is described via the
RATE SENSITIVITY FUNCTION (see [1], pg. B-3).

Warning: The RATE SENSITIVITY FUNCTION command should be used with
caution. The implementation appears to overestimate concrete strength in tension,
and users are cautioned to provide rate sensitivity function values that have the
value of 1.0 for positive (tensile) values of strain rate. These values correspond to
no additional strength in tension due to strain rate, and are both physically realistic
and conservative.

• The function describing the relationship between pressure and volumetric strain is described
via the PRESSURE FUNCTION.

• The function characterizing the relationship between bulk modulus and volumetric strain
during unloading is described via the UNLOAD BULK MODULUS FUNCTION.

• The function describing the hardening and softening functions function eta as a func-
tion of the material parameters lambda (see LAMBDAM and LAMBDAZ) is defined via the
HARDEN- SOFTEN FUNCTION (see [1], pg. B-3).
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18.3 Kayenta Model

Note, many parameters of this model are undocumented.

BEGIN PARAMETERS FOR MODEL KAYENTA

BO = <real> bO

B1 = <real> bl

B2 = <real> b2

B3 = <real> b3

B4 = <real> b4

GO = <real> gO

G1 = <real> gl

G2 = <real> g2

G3 = <real> g3

G4 = <real> g4

RJS = <real> rjs

RKS = <real> rks

RKN <real> rkn

A1 = <real> al

A2 = <real> a2

A3 = <real> a3

A4 = <real> a4

PO = <real> pO

P1 = <real> p1

P2 = <real> p2

P3 = <real> p3

CR = <real> cr

RK = <real> rk

RN = <real> rn

HC = <real> hc

CTPSF = <real> ctpsf

CUTPS = <real> cutps

CUTI1 = <real> cutil

T1 = <real> tl

T2 = <real> t2

T3 = <real> t3

T4 = <real> t4

T5 = <real> t5

T6 = <real> t6

T7 <real> t7

J3TYPE = <real> j3type

A2PF = <real> a2pf

A4PF = <real> a4pf

CRPF = <real> crpf

RKPF = <real> rkpf

FAILO = <real> fail0

FAIL1 = <real> faill

FAIL2 = <real> fail2
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FAIL3

FAIL4

FAIL5

FAIL6

FAIL7

FAIL8

FAIL9

PEAKI1I

STRENI

FSLOPEI

PEAKI1F

STRENF

FSLOPEF

SOFTENING

IEOSID

DILATLIM

NU

YSLOPEI

YSLOPEF

CKNO1

VMAX1

SPACE1

SHRSTIFF1

CKNO1

VMAX1

SPACE1

SHRSTIFF1

CKNO1

VMAX1

SPACE1

SHRSTIFF1

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

<real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

<real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

fail3

fai14

fail5

fail6

fai17

fail8

fail9

peakili

streni

fslopei

peakilf

strenf

fslopef

softening

ieosid

dilatlim

nu

yslopei

yslopef

cknO1

vmaxl

spacel

shrstiffl

cknO2

vmax2

space2

shrstiff2

cknO3

vmax3

space3

shrstiff3

END [PARAMETERS FOR MODEL KAYENTA]

Kayenta is an outgrowth of the the Brannon-Fossum-Strack isotropic geomaterial model. that in-
cludes features and fitting functions appropriate to a broad class of materials including rocks, rock-
like engineered materials (such as concretes and ceramics), and metals. Fundamentally, Kayenta is
a computational framework for generalized plasticity models. As such, it includes a yield surface,
but the term "yield" is generalized to include any form of inelastic material response including
microcrack growth and pore collapse. Kayenta supports optional anisotropic elasticity associated
with ubiquitous joint sets. Kayenta supports optional deformation-induced anisotropy through
kinematic hardening (in which the initially isotropic yield surface is permitted to translate in devi-
atoric stress space to model Bauschinger effects). The governing equations are otherwise isotropic.
Because Kayenta is a unification and generalization of simpler models, it can be run using as few
as 2 parameters (for linear elasticity) to as many as 40 material and control parameters in the
exceptionally rare case when all features are used. Isotropic damage is modeled through loss of
stiffness and strength. If ever you are unsure of the value of a parameter, leave it unspecified so
that Kayenta can use an appropriate default. See [3] for a full description of the model, inputs, and
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output variables.

The command block for a Kayenta material starts with the line:

BEGIN PARAMETERS FOR MODEL KAYENTA

and terminates with the line:

END [PARAMETERS FOR MODEL KAYENTA]

In the above command blocks:

• The following are valid parameters for the Kayenta material model. If ever you are unsure of
the value of a parameter, leave it unspecified so that Kayenta can use an appropriate default.
• The initial elastic bulk modulus is defined with the Bo command line.
• The high pressure coefficient in nonlinear elastic bulk modulus function is defined with

the B i command line.
• The curvature parameter in nonlinear elastic bulk modulus function is defined with the B2

command line.
• The coefficient in nonlinear elastic bulk modulus to allow for plastic softening is defined

with the B3 command line.
• The power in bulk modulus softening is defined with the B4 command line.
• The initial elastic shear modulus is defined with the GO command line.
• The coefficient in shear modulus hardening is defined with the G1 command line.
• The curvature parameter in shear modulus hardening is defined with the G2 command line.
• The coefficient in shear modulus softening is defined with the G3 command line.
• The power in shear modulus softening is defined with the G4 command line.
• The joint spacing is defined with the RJS command line.
• The joint shear stiffness is defined with the RKS command line.
• The joint normal stiffness is defined with the RKN command line.
• The constant term for meridional profile function of ultimate shear limit surface is defined

with the Al command line.
• The curvature decay parameter in the meridional profile function is defined with the A2

command line.
• The parameter in the meridional profile function is defined with the A3 command line.
• The high-pressure slope parameter in meridional profile function is defined with the A4

command line.
• One third of the elastic limit pressure parameter at onset of pore collapse is defined with

the P O command line.
• One third of slope of porosity vs pressure crush curve at elastic limit is defined with the

P 1 command line.
• The parameter for hydrostatic crush curve is defined with P2 command line.
• The asymptote of the plastic volumetric strain for hydrostatic crush is defined with the P3

command line.
• The parameter for porosity affecting shear strength is defined with the CR command line.
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• The triaxial extension strength to compression strength ratio is defined with the RK com-
mand line.

• The initial shear yield offset [non negative] is defined with the RN command line.
• The kinematic hardening parameter is defined with the HC command line.
• The tension cut-off value of Il is defined with the CUT II command line.
• The tension cut-off value of principal stress is defined with the CUTP s command line.
• The relaxation time constant 1 is defined with the T1 command line.
• The relaxation time constant 2 is defined with the T2 command line.
• The parameter no longer in use. [set to zero] is defined with the T3 command line.
• The parameter no longer in use. [set to zero] is defined with the T4 command line.
• The relaxation time constant 5 (stress). is defined with the T5 command line.
• The relaxation time constant 6 (time). is defined with the T6 command line.
• The relaxation time constant 7 (1/stress). is defined with the T7 command line.
• The type of 3rd deviatoric stress invariant function is defined with the J3TYPE command

line.
• The potential function parameter 1 (default=A2) is defined with the A2PF command line.
• The potential function parameter 2 (default=A4) is defined with the A4PF command line.
• The potential function parameter 3 (default=CR) is defined with the CRPF command line.
• The potential function parameter 4 (default=RK) is defined with the RKPF command line.
• The failed speed is defined with the FSPEED command line.
• The peak Il hydrostatic tension strength is defined with the PEAKI1I command line.
• The peak (high pressure) shear strength is defined with the s TRENT command line.
• The initial slope of limit surface at PEAKIII is defined with the F S LOP E I command line.
• PEAKI1F is the same as PEAKI1I, but for failed limit surface.
• STRENF is the same as STRENI, but for failed limit surface.
• FSLOPEF is the same as FSLOPEI, but for failed limit surface.
• The s OF TEN I NG command line allows transition of limit surface from intact description

to failed description.
• The amount of time that passes with the stress state at the limit surface before the limit

surface collapses (i.e., softens) is defined with the TFAIL command line.
• The upper limit on plastic volume strain is defined with the DILATLIM command line.
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18.4 Shape Memory Alloy

BEGIN PARAMETERS FOR MODEL SHAPE_MEMORY ALLOY

# Elastic constants

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G
BULK MODULUS = <real> K
LAMBDA = <real> A

TWO MU = <real> Zo

# Thermoelastic properties of two crystallographic phases

ELASTIC MODULUS AUSTENITE = <real> EA

POISSON RATIO AUSTENITE = <real> vA

CTE AUSTENITE = <real> aA

ELASTIC MODULUS MARTENSITE = <real> Em

POISSON RATIO MARTENSITE = <real> vm

CTE MARTENSITE = <real> am

# Phase diagram parameters

MARTENSITE START = <real> Ats

MARTENSITE FINISH = <real> Mf

AUSTENITE START = <real> As

AUSTENITE FINISH = <real> Af

STRESS INFLUENCE COEFF MARTENSITE <real> Cm

STRESS INFLUENCE COEFF AUSTENITE = <real> CA

# Transformation strain magnitude parameters

H_MIN = <real> Hmin

H_SAT = <real> Hsat

KT = <real> k
SIGMA_CRITICAL = <real> o-crit

# Calibration parameters

N1 = <real> nl

N2 = <real> n2

N3 = <real> n3

N4 = <real> n4

SIGMA STAR = <real> le

TO = <real> 00

# Initial phase conditions
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XI 0 = <real> = 0) (0.0)

PRESTRAIN_DIRECTION = <int> nPS (0)

PRESTRAIN_MAGNITUDE = <real> 1141 = 0)11 ( 0 . 0 )

END [PARAMETERS FOR MODEL SHAPE_MEMORY_ALLOY]

The shape memory alloy (SMA) model is used to describe the thermomechanical response of
intermetallics (e.g. NiTi, NiTiCu, NiTiPd, NiTiPt) that can undergo a reversible, diffusionless,
solid-to-solid martensitic transformation. Specifically, the materials have a high-symmetry (typi-
cally cubic) austenitic crystallographic structure at high temperature and/or low stress. At lower-
temperatures and/or high stress the crystallographic structure is transformed to a lower symmetry
(typically orthorhombic or monoclinic) martensitic phase. The change in structure and symmetry
may be taken advantage of to produce large inelastic strains of 1-8%. Importantly, this class of
materials differentiates itself from TRIP steels in that the transformation is reversible and a variety
of thermomechanical loading paths have been conceived of to take advantage of this behavior. A
notable application of these materials is as an actuator in smart, morphing structures.

Phenomenologically, the macroscopic behavior of SMAs is typically discussed in effective stress-
temperature space via a phase diagram like in Figure 18.1. The four lines denoted Ms, Mf, As,
and Af indicate the martensitic start, martensitic finish, austenitic start, and austenitic finish trans-
formation surfaces. Forward transformation (from an austenitic to a martensitic state) is described
by the martensitic start and finish surfaces. Specifically, the former refers to the thermomechanical
conditions at which transformation will initiate while the latter corresponds to complete transfor-
mation. The difference between the two surfaces is associated with internal hardening effects due to
microstructure (i.e. texture, back stresses). Transformation from martensite to austenite is referred
to as reverse and is characterized by the austenitic start and finish surfaces. Detailed discussion of
the crystallography and phenomenology may be found in [4, 5]1.

Two responses characteristic of SMAs may also be represented via the phase diagram. These are
the actuation response and the pseudoelastic (often referred to as superelastic in the literature)
responses. The first (actuation) is indicated by path "A" in Figure 18.1. In this case, a mechanical
bias load is applied to the SMA and the material is then thermally cycled through forward and
reverse transformation. The resulting transformation first produces and then removes the large
transformation strains of SMAs and is commonly used for (surprisingly) actuation applications.
At higher temperatures (T > Af), mechanical loading may be used induce forward and, upon
unloading, reverse transformation as indicated in path "H' of Figure 18.1. Through such a cycle,
a distinctive flag shape in the stress strain response is observed through which large amounts of
energy may be dissipated while producing no permanent deformations. As such, this loading path
is often considered for vibration isolation or damping applications.

In LAMÉ, the response of SMAs is described by the phenomenological model of Lagoudas and
coworkers [6]. This model was motivated by actuator applications and it describes the inelastic

11n the martensitic configuration, the crystallographic structure can either self-accommodate in a twinned config-

uration producing no macroscopic inelastic strain or an internal or external stress field may be used to detwin the

microstructure thereby producing the desired inelastic strain. For simplicity, this distinction is bypassed in this brief

text and the interested reader should consult the referenced works.
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Martensite

temperature

Figure 18.1: Representative phase diagram of shape memory alloys highlighting characteristic
loading paths ((A) and (B)), transformation surfaces, and phases.

deformation associated with martensitic transformation through two internal state variables — the
scalar martensitic volume fraction, e, and tensorial transformation strain tensor, str. Before pro-
ceeding it should be noted that the structural response of SMA specimens and components exhibit
a rate dependency associated with the strong thermomechanical coupling of SMAs. Specifically,
the transformation process gives off/absorbs large amounts of energy via the latent heat of trans-
formation. The rate dependence observed is a result of the characteristic time scale associated
with thermal transport of this heat. In pure mechanical analyses (like Sierra/SM), this means qua-
sistatics loadings are typically considered (a strain rate of 1 x10-4 and/or heating/cooling rate of
2°C/min). Formulations accounting for the full coupling have been developed but require more

complex implementations.

To begin, the model assumes an additive decomposition of the total, elastic, thermal, and transfor-
mation deformation (strain) rates respectively denoted by Dii, and D. producing a total
deformation rate of the form,

Dii = D7.1, + + (18.1)

With respect to the thermoelastic deformations, it is noted that the different crystallographic phases
have different thermoelastic constants. Previous studies have demonstrated that a rule of mixtures
on the compliance and other material properties of the form,

Silkl = ijkl e (41. — s;kl) = e (18.2)

ajj = aA(5i + e (amôjj — crAdii) = + eAce6ij, (18.3)
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in which Sod and ai j are the current effective compliance and coefficient of thermal expansion and
the superscripts "A" and "M" denote thermoelastic properties in the austenitic and martensitic con-
figuration. The symbol "A" is used to indicate the difference in a property between the martensitic
and austenitic phases while Su is the Kronecker delta. Isotropy is assumed for all these properties
and the compliances are determined via the definition of elastic moduli and Poisson's ratio of the
two phases — EA , EM, vM, and vm. The two Poisson ratios are often the same and take typical values
for metals (vA 0.3) while the elastic moduli can differ by a factor of more than two. For
instance the austenitic modulus of NiTi is typically given as 70 GPa while the martensitic one is
30 GPa2. Importantly, this difference means that the thermoelastic properties and corresponding

deformations vary with transformation. As such, the corresponding rates of deformation are given
as,

Asifido-k, Sijkl (3rkl,

M.; = Odthi j (0 — 00) + aSi JO,

(18.4)

(18.5)

where 0 and 00 are the current and reference temperature and o-ii is the symmetric Cauchy stress.
Note, in using the SMA model a temperature field must be defined. The stress rate may then be
shown to be,

o

Cr ij— ijkl (Dkl — ac5kItlita e (Askl„,„0-mr, + OaSkl (0 — 0 — D , (18.6)

with Cum being the current stiffness tensor defined as Cifid =~~~kl.

To describe the transformation strain evolution, it is assumed that these deformations evolve with
(and only with) the martensitic volume fraction, e. The corresponding flow rule is given as,

Dtiri = (18.7)

and Ai j is the transformation direction tensor assumed to be of the form,

Hcur (cr v _•\ 2 _sij
M 2 col

=./ 
e-rev

erev

(18.8)

In (18.8), Ifur is the transformation strain magnitude that is dependent on the von Mises effective
stress, 5-„Af, and sii is the deviatoric stress. With forward transformation defined in this way, it is
assumed that deformation is shear-based and follows a J2 like flow direction. For reverse trans-
formation (e < 0), the postulated form is utilized to ensure complete recovery of transformation
strains with martensitic volume fraction. In other words, all transformation strain components are
zero-valued at e= 0. Without enforcing this condition in this way, non-proportional loading paths
could be constructed producing a non-zero transformation strain when the material is austenitic.

2Given the lower symmetry of the martensitic phase the determination of an isotropic elastic modulus can vary with
characterization methodology. In this case, the apparent elastic modulus measured from macroscopic thermoelastic
tests should be used.
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The transformation strain at load reversal, 45— rev , and martensitic volume fraction at load reversal,
ry, are then tracked (via the implementation) and used for this purpose.

The transformation strain magnitude, Ifur, is a function of the von Mises effective stress (5-vM)
and is introduced to incorporate detwinning effects without introducing an additional internal state
variable complicating the model. Specifically, at low stress values, this function returns a minimum
value. If the microstructure is self-accommodated this value will be zero. A decaying exponential
is used such that as the stress increases the value of the strain magnitude becomes that of the
maximum value incorporating both crystallographic and texture effects. The given functional form
is,

Hcur = Hmin CrvM C Crcrit

Hmin + (Hsat — Hmin) (1 — exp (—k (5--vm — Ccrit))) CrvM > Can
(18.9)

where Hmin, Hsat, k, and (rent are model parameters giving the minimum transformation strain
magnitude, maximum transformation strain magnitude, exponential fitting parameter governing
the transition zone, and critical stress values (in some ways analogous to the detwinning stress).

The evolution of martensitic transformation process is governed by a transformation function serv-
ing an analogous role to the yield function in plasticity. This function is given by,

f (o-ii, 0, 4) = ±Ø (crip 0, 4) — (0-ii) , (18.10)

with 0 begin the thermodynamic driving force for transformation and 5- the critical value. The ± is
used to denote either forward (+) or reverse (—) transformation. This transformation function and
the associated forms are derived from continuum thermodynamic considerations and the details of
that process are neglected here for brevity but may be found in [6]. The functional forms of these
variables are given as,

A(0-ii, 6), 4) 0,1k + -20-J./LA ificl(rn + jAaSi (0 — 00) + pAs00 — pAuo — ft (0,

o- (o-ii) = 0-0 + DcrijAij, (18.11)

in which pAso and pAuo are the differences in reference entropy and internal energy of the two
phases, D is a calibration parameter intended to capture variations in dissipation with stress, and
ft (4) is the hardening function. With respect to this latter term, empirical observations were used
to arrive at a postulated form of,

ft (e) _ Sal (1 + e - _ on2)± a3 e~0
,a2(1-Fen3—(1—er)—a3 e<0 (18.12)

with al, a2, and a3 being fitting parameters and n1, n2, n3, and n4 are exponents fit to match the
smooth transformation from elastic to inelastic deformations at the start of forward, end of forward,
start of reverse, and end of reverse transformation respectively.
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Before proceeding, one final note should be given in regards to calibration. Specifically, some
of the model parameters just listed (al, a2, a3, D, cro, pAso and pAuo) are not easily identified
or conceptualized in terms of common thermomechanical experiments. Some easily identifiable
parameters (Ms, Mf, As, and Af), however, are not evident in the theoretical formulation. Con-
ditions associated with these terms and some physical constraints may be used to determine the
model parameters in terms of these more accessible properties. These relations are,

pAso = 
2 (CmcA) [Hair (cr) crancur + ( Elm )

aoEA -
CM + CA 

10-=0-*
(CM CA) [HCtir (Cr) ± Cr Sir cr (E÷,, — PA)]

D.
(CM +cA) [Hcur (c) 

+ croz.] lcr=o-*

al = pAso (Mf — MO, a2 = pAso (A, — Af) ,

ai ( 1 1  ) az 1 1
a3 =

— 1 + 
+ (1 +

4 ni + 1 n2 + 1 4 n3 + 1 n4 + 1 )

PASO pAso ,,, A 
f) — a3,pAuo = (Ms+ Af) , cro =   (iv/ s — /-1

(18.13)

(18.14)

(18.15)

(18.16)

(18.17)

in which o-* is the scalar stress measure in which the calibration is performed at. For additional
discussion on the characterization of SMAs and calibration of this model, the user is referred
to [7, 8].

In the command blocks that define the Shape Memory Alloy model:

• See the User's Guide chapter on Material Models for more information on elastic constants
input. Although the thermoelastic constants of the phases are defined separately, the defini-
tion of these constants in this form is necessary for the global solver. Typical values of the
phases should be applied.

• The isotropic elastic moduli of the austenitic (EA) and martensitic phases (EM) are defined
with the ELASTIC MODULUS AUSTENITE and ELASTIC MODULUS MARTENSITE com-
mand lines, respectively. Note, alternative elastic constants (e.g. bulk or shear moduli)
may not be used.

• The isotropic Poisson's ratio of the austenitic (vA) and martensitic phases (vm) are de-
fined with the POISSON RATIO AUSTENITE and POISSON RATIO MARTENSITE com-
mand lines, respectively. Note, alternative elastic constants (e.g. lame constant) may not
be used.

• The isotropic coefficient of thermal expansion of the austenitic (aA) and martensitic phases
(am) are defined with the CTE AUSTENITE and CTE MARTENSITE command lines, respec-
tively. Note, given the phase and history dependence of the material thermal expansion, the
use of artificial or thermal strain functions may not lead to desired results. The use of these
constants in encouraged instead.
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• The zero stress, smooth transformation temperatures corresponding to the start and end of
forward transformation (martensitic start Ms and finish Mf, respectively) and start and end
of reverse transformation (austenitic start As and finish Af, respectively) are given by the (in
order) command lines MARTENSITE START, MARTENSITE FINISH, AUSTENITE START,
and AUSTENITE FINISH.

• The stress influence coefficients giving the slope of the forward and reverse transforma-
tion surfaces (CM and CA, respectively) are given by the STRESS INFLUENCE COEFF
MARTENSITE and STRESS INFLUENCE COEFF AUSTENITE, respectively.

• The stress dependence of the transformation strain magnitude requires four coefficients.
These are the minimum transformation strain magnitude (Hmin), the saturation (or maxi-
mum) magnitude (H„t), exponential fitting coefficient (k), and critical effective stress value
below which the magnitude is minimum (o-crit). These parameters are defined via the H_MIN,
H_SAT, KT, and SIGMA_CRITICAL command lines, respectively.

• The smooth hardening fitting constants n1, n2, n3, and n4 correspond to the degree of smooth-
ness (essentially how gradual the transformation is) of the martensitic start, martensitic fin-
ish, austenitic start, and austenitic finish transformation surfaces. They are given by the N1,
N2, N3, and N4 command lines, respectively, and should take values 0 < ni < 1.

• The stress level of transformation at which calibration is performed is denoted by cr* and
given by the command line s I GMA S TAR. For thermally induced transformation this corre-
sponds to the bias stress level while in pseudo-elastic loadings it corresponds to the stress
level at which the material is roughly evenly split between martensite and austenite.

• The zero-strain reference temperature is denoted 0o and prescribed via the T O command line.

• Three optional parameters describing the initial state of the material may be input. These
parameters are intended for the case in which the material is initially martensite to allow
for initial heating and transformation recovery. The first is the initial martensitic volume
fraction, e (t = 0), input via the xi 0 command line. If this parameter is not specified the
default value is 0.0 representative of an austenitic material. A value between 0.0 and 1.0
may be entered to initialize the material to partially (or fully) martensitic. Correspond-
ing initial transformation strains may be entered via the P RE S T RA I N_D I RE C T ION (nPs) and
P RE S T RA I N_MAGN I T UD E (t = 0) 11) commands. The first (an integer between one and
three) gives the direction of transformation (in global Cartesian space) and the magnitude
of the inelastic strain in that direction is given by a fraction (between 0 and 1) of Hsat via
the second PRESTRAIN_MAGNITUDE line. As the transformation strain tensor is deviatoric,
the other two directions are specified by preserving that the tensor be trace less. Note, the
PRESTRAIN_DIRECTION and PRESTRAIN_MAGNITUDE cannot be specified without a non-
zero xi 0 definition. Some additional capabilities in this regard have been developed but the
interested users should consult with the developers.

• It is recommended that the strain incrementation = strongly_objective section
definition always be used in conjunction with the shape_memory_alloy model.
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• Thermal strains functions and commands in Sierra should not be used in conjunction with
the shape_memory_alloy model.

Output variables available for this model are listed in Table 18.1.

Table 18.1: State Variables for SHAPE MEMORY ALLOY Model (Section 18.4)

Name Description
MVF martensitic volume fraction,
TransStrain transformation strain tensor, sri
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18.5 Linear Elastic

BEGIN PARAMETERS FOR MODEL LINEAR_ELASTIC

#

# Elastic constants

#

YOUNGS MODULUS = <real> E
POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G
BULK MODULUS = <real> K

LAMBDA = <real> A
END [PARAMETERS FOR MODEL LINEAR_ELASTIC]

The L I NEAR_E LAS T I c material is used for modeling infinitesimal strain elastic response. Gener-

ally this model is used for code verification work when comparing to infinitesimal strain solutions.

This differs slightly from the standard E LAS T I c model which is formulated for general finite strain.
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18.6 Elastic Three-Dimensional Anisotropic Model

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ANISOTROPIC

# Elastic constants

YOUNGS MODULUS = <real>

POISSONS RATIO = <real>

SHEAR MODULUS = <real>

BULK MODULUS = <real>

LAMBDA = <real>

TWO MU = <real>

# Material coordinates system definition

COORDINATE SYSTEM = <string> c=inate_system name

DIRECTION FOR ROTATION = <real>

ALPHA <real>

SECOND DIRECTION FOR ROTATION = <real> 

71 (1217grees)

SECOND ALPHA

# Required parameters

E
v

G
K

2p

= <real> a2 (degrees)

STIFFNESS MATRIX 11 = <real> CIA
STIFFNESS MATRIX 22 = <real> C22
STIFFNESS MATRIX 33 = <real> Cn
STIFFNESS MATRIX 12 = <real> Cu
STIFFNESS MATRIX 13 = <real> Co
STIFFNESS MATRIX 23 = <real> Cn
STIFFNESS MATRIX 44 = <real> C4.4.
STIFFNESS MATRIX 55 = <real> C55
STIFFNESS MATRIX 66 = <real> C55
STIFFNESS MATRIX 45 = <real> C45

STIFFNESS MATRIX 46 = <real> C46

STIFFNESS MATRIX 56 = <real> C56

STIFFNESS MATRIX 14 = <real> C14

STIFFNESS MATRIX 15 = <real> C15

STIFFNESS MATRIX 16 = <real> C16

STIFFNESS MATRIX 24 = <real> C24

STIFFNESS MATRIX 25 = <real> C25

STIFFNESS MATRIX 26 = <real> C26

STIFFNESS MATRIX 34 = <real> C34

STIFFNESS MATRIX 35 = <real> C35

STIFFNESS MATRIX 36 = <real> Cm

# Thermal strain functions

THERMAL STRAIN 11 FUNCTION = <real> 41"
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THERMAL STRAIN 22 FUNCTION = <real> M(19)

THERMAL STRAIN 33 FUNCTION = <real> Etnk1110,

THERMAL STRAIN 12 FUNCTION = <real> euk miV,\

THERMAL STRAIN 23 FUNCTION = <real> ME:Dk,

THERMAL STRAIN 13 FUNCTION = <real> c3(19)

END [PARAMETERS FOR MODEL ELASTIC_3D_ANISOTROPIC]

The ELASTIC 3D ANISOTROPIC model is an extension of the ELASTIC model which allows
for full anisotropy in both the material stiffness and thermal expansion. Each stiffness component
is labeled with i and j indices which correspond to the components of stress and strain vectors in
contracted notation,

0-11

0-22

0-33

0-12

0-23

0-13

C11 C12

C12 C22

C13 C23

C14 C24

C15 C25

C16 C26

C13 C14

C23 C24

C33 C34

C34 C44

C35 C45

C36 C46

C15 C16

C25 C26

C35 C36

C45 C46

C55 C56

C56 C66_

mech-
611
,mech
E22
mech
E33
mech
E12
mech
E23
mech
613 _

where the stress and strain components are with respect to principle material directions. The ther-
mal strains are defined in a similar manner,

E = emech Eth, Eth = (a\ ta\ ,th im (AQ
) 

ta 6.1113(0AT
cllW/ c22kul c33ku 1 'Mu c23W

In a finite strain situation, the anisotropic model is formulated in a hypoelastic manner with a
constitutive equation of

j = Cijkl (D kl Dtkl() 9

where Dkl and Dtkili are the total and thermal strain rates, respectively, and the components of the
fourth order stiffness tensor C ifk1 are related to the contracted notation by

C1111 C1122 C1133 C1112 C1123 C1113

C1122 C2222 C2233 C2212 C2223 C2213

C1133 C2233 C3333 C3312 C3323 C3313

C1112 C2212 C3312 C1212 C1223 C1213

C1123 C2223 C3323 C1223 C2323 C2313

C1113 C2213 C3313 C1213 C2313 C1313_

[C] =
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18.7 J2 Plasticity

BEGIN PARAMETERS FOR MODEL J2_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> A

TWO MU = <real> Zp

#

# Yield surface parameters

#

YIELD STRESS = <real> a-3,

A = <real> a (1.0)

BETA <real> 13 (1.0)

#

# Hardening model

#

HARDENING MODEL = LINEAR 1 POWER_LAW 1 VOCE 1 USER_DEFINED I

FLOW_STRESS I DECOUPLED_FLOW_STRESS I CUBIC_HERMITE_SPLINE

JOHNSON_COOK 1 POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real> LC

#

# Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> si, (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> to

#

# Power law breakdown hardening

#
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HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

# Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

#

#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR I POWER_LAW I VOCE I

USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

# - Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK I POWER_LAW_BREAKDOWN I

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power-law-breakdown

# same as before EXCEPT no need to specify a

# hardening function

#

# - Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK I USER_DEFINED I

TEMPERATURE INDEPENDENT (TEMPERATURE INDEPENDENT)

#

# Johnson-Cook temperature dependence

#

MELTING TEMPERATURE = <real> °melt

REFERENCE TEMPERATURE = <real> Oref
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TEMPERATURE EXPONENT = <real> M

#

# User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION

#

# Following Commands Pertain

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR I POWER_LAW I VOCE I USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_name

#

# - Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK I POWER_LAW_BREAKDOWN

RATE_INDEPENDENT (RATE_INDEPENDENT)

= <string>temp_mult_function_name

to Decoupled_Flow_Stress Hardening Model

#

# Specifications for Johnson-Cook, Power-law-breakdown same as before

# EXCEPT no need to specify a hardening function

# AND should be preceded by YIELD

#

# As an example for Johnson-Cook yield rate dependence,

#

YIELD RATE CONSTANT = <real> CY

YIELD REFERENCE RATE = <real> fY0
#

HARDENING_RATE MULTIPLIER JOHNSON_COOK I POWER_LAW_BREAKDOWN I

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Syntax same as for yield parameters but with a HARDENING prefix

#

# - Temperature dependence

#

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK I USER DEFINED I

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson-Cook temperature

#

YIELD MELTING TEMPERATURE

YIELD REFERENCE TEMPERATURE

YIELD TEMPERATURE EXPONENT

dependence

= <real> 6rnelt
= <real> OrYe f

= <real> MY
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# User-defined temperature dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_name

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK I USER_DEFINED I

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

Syntax for hardening constants same as for yield but

with HARDENING prefix

END [PARAMETERS FOR MODEL J2_PLASTICITY]

The J2 plasticity model is a generic implementation of a von Mises yield surface with kine-
matic and isotropic hardening features. Unlike similar models (e.g. Elastic-Plastic, Elastic-Plastic
Power Law) more general, in-development isotropic hardening models are implemented that en-
able greater flexibility in definition and the possibilities of limited rate and/or temperature depen-
dence. Note, although some testing exists, these feature remain "in-developmenr.

As is common to other plasticity models in Lamé, the J2 plasticity model is an isotropic, hypoe-
lastic formulation. As such, the total rate of deformation is additively decomposed into an elastic
and plastic part such that

Dij=D~+Dp. (18.18)

The objective stress rate, depending only on the elastic deformation, may then be written as,

0-ij= ijkl kl9

where (Ciin is the fourth-order elastic, isotropic stiffness tensor.

The yield surface for the J2 plasticity model, f, may be written,

f (o-jj, ajj, e,e, = (cru, au) - (e,e,e)

(18.19)

(18.20)

in which alj, sp, sp, and 0 are the kinematic backstress, equivalent plastic strain, equivalent plastic
strain rate, and absolute temperature, respectively, while and 5- are generically the effective
stress and flow stress. Broadly speaking, the effective stress encapsulates directional and kinematic
effects while the flow stress gives the size of the current yield surface. It should also be noted
that writing the yield surface in this way splits the dependence on the state variables between the
effective stress and flow stress functions.

As the current model is for J2 plasticity, the effective stress is given as,

, 3 ,
02 (0-ij, œij) = 

2 
— ajj) — aij) , (18.21)
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with sii being the deviatoric stress defined as su = (rij — (1/3)(rkk6ii• For the flow stress, a general
representation of the form,

6- (e , 19) = 0-3 5-3, (e) 6-3, (9) + K (V') (kP) 61(0) , (18.22)

is allowed. In this fashion, the effects of isotropic hardening (K (0)), rate (&y,h), and temperature
Cery,h) are decomposed although separate temperature and rate dependencies may be specified for
yield (subscript "y") and hardening ("If '). Such an assumption is an extension of the multiplicative
decomposition of the Johnson-Cook model [9, 10]. It should be noted that not all such effects need
to be included and the default assumption of the hardening classes is that the response is rate and
temperature independent. The following section on plastic hardening will go into more detail on
possible choices for functional representations.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

P •  ao D y (18.23)

where j, is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f, it can also be shown that ji =

In the command blocks that define the J2 plasticity model:

• See the User's Guide chapter on Material Models for more information on elastic constants
input.

• The reference nominal yield stress, 5-, is defined with the Y I ELD S TRE S s command line.

• The beta parameter defines if hardening is isotropic. Consult the Sierra/SM User Manual
chapter on Material Models for more information on the beta parameter.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONS T AN T command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXP ONENT command line.

• The Liiders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

146



• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

• The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the RATE
MULTIPLIER command line.

• The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

• The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

• For a Johnson-Cook temperature multiplier, the melting temperature, Omelt, is defined via the
MELTING TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the reference temperature, °ref/ is defined via the
REFERENCE TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the temperature exponent, M, is defined via the
TEMPERATURE EXPONENT command line.

• The optional rate multiplier for the yield stress for the decoupled flow stress hardening model
is defined with the YIELD RATE MULTIPLIER command line.

• The optional rate multiplier for the hardening for the decoupled flow stress hardening model
is defined with the HARDENING RATE MULTIPLIER command line.

• The optional temperature multiplier for the yield stress for the decoupled flow stress harden-
ing model is defined with the YIELD TEMPERATURE MULTIPLIER command line.

• The optional temperature multiplier for the hardening for the decoupled flow stress hardening
model is defined via the HARDENING TEMPERATURE MULTIPLIER command line.

Output variables available for this model are listed in Table 18.2.
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Table 18.2: State Variables for J2 PLASTICITY Model (Section 18.7)

Name Description
EQPS equivalent plastic strain, kP
EQDOT equivalent plastic strain rate, kP
SEFF effective stress, 0
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18.8 Karafillis Boyce Plasticity Model

BEGIN PARAMETERS FOR MODEL KARAFILLIS_BOYCE PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> A

TWO MU = <real> Zp

#

# Yield surface parameters

#

YIELD STRESS = <real> a-3,

A = <real> a (4.0)

C = <real> c (0.0)

COEFF = <real> C (2.0/3 0)

ALPHA 1 = <real> cl (1.0)

ALPHA 2 = <real> c2 (1.0)

GAMMA 1 = <real> cl (1.5)

GAMMA 2 = <real> c2 (1.5)

GAMMA 3 = <real> c3 (1.5)

#

# Hardening model

#

HARDENING MODEL = LINEAR 1 POWER_LAW 1 USER_DEFINED I

CUBIC_HERMITE_SPLINE

#

# Linear hardening

#

HARDENING MODULUS = <real> 11'

#
# Power law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

# Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals
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KNOT STRESS = <real_list> vals

# Material coordinates system definition

COORDINATE SYSTEM = <string> coordinate_system name

DIRECTION FOR ROTATION = <real> 1120

ALPHA = <real> al (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1120

SECOND ALPHA = <real> 02 (degrees)

END [PARAMETERS FOR MODEL KARAFILLIS_BOYCE_PLASTICITY]

The Karafillis and Boyce model [11] is an anisotropic plasticity model. The stress is transformed,
based on the anisotropy, and the transformed stress is used in the yield function. The transformed
stress, using Voigt notation in the material coordinate system, is given by

[C] = C

where the terms are

s' = C : a

1 fli 132 o 0 o
pi al 163 0 0 0

P2 )33 a2 0 0 0

0 0 0 yi 0 0
0 0 0 0 y2 0
O 0 0 0 0 y3

fl2

)33 =

02 - al - 1

2

al — 02 — 1

2

1 — al — a2

2

The response is isotropic if al = a2 = 1, yi = Y2 = y3 = 1.5, and C = 2/3.

The principal stresses of the transformed stress, s', are used in the yield function
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= {(1 — + c02}1/a

01 = — 
2 
(is1 — 521a + 1s2 — s3 la + Is3 — sir)

02 = 2,: 2 (Isi la + Is2la + Is31a)

The exponent, a, is similar to the exponent in the Hosford plasticity model and the constant, c (not
to be confused with C above), is a parameter that provides a mixture of two yield functions.

In the command blocks that define the Hosford plasticity model:

• Consult the Sierra/SM User's Guide chapter on Material Models for more information on
elastic constants input.

• The reference nominal yield stress, 6- , is defined with the Y I E LD S TRES s command line.
• The exponent for the yield surface description, a, is defined with the A command line.
• The coefficient C in the stress transformation is defined with the COEFF command line.
• The term al in the stress transformation is defined with the ALP HA 1 command line.
• The term a2 in the stress transformation is defined with the ALP HA 2 command line.
• The term yi in the stress transformation is defined with the GAMMA 1 command line.
• The term y2 in the stress transformation is defined with the GAMMA 2 command line.
• The term y3 in the stress transformation is defined with the GAMMA 3 command line.
• The type of hardening law is defined with the HARDENING MODEL command line, other

hardening commands then define the specific shape of that hardening curve.
• The hardening modulus for a linear hardening model is defined with the HARDENING

MODULUS command line.
• The hardening constant for a power law hardening model is defined with the HARDENING

CONS TAN T command line.
• The hardening exponent for a power law hardening model is defined with the HARDENING

EXP ONENT command line.
• The hardening function for a user defined hardening model is defined with the HARDENING

FUNCT ION command line.
• The shape of the spline for the spline based hardening is defined by the CUBIC SP L INE

TYPE, CARD INAL PARAMETER, KNOT EQP S, and KNOT S TRES S command lines.

Output variables available for this model are listed in Table 18.3.
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Table 18.3: State Variables for KARAFILLIS_BOYCE_PLASTICITY Model

Index Name Variable Description

1 EQP S equivalent plastic strain, e3
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18.9 Cazacu Plasticity Model

BEGIN PARAMETERS FOR MODEL CAZACU_PLASTICITY

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> A

TWO MU = <real> Zp

#

# Yield surface parameters

#

YIELD STRESS = <real> a-3,

A = <real> a (1.0)

#

# tension/compression assymetry

#

RATIO = <real> r

#

# Hardening model

#

HARDENING MODEL = LINEAR I POWER LAW I VOCE I USER DEFINED I

FLOW_STRESS I DECOUPLED_FLOW_STRESS I CUBIC_HERMITE_SPLINE

JOHNSON COOK I POWER LAW BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real> Tr

#
# Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> EL (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> to
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#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

# Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

#

#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR I POWER_LAW 1 VOCE I

USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso hardening fun name

#

# - Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK 1 POWER_LAW_BREAKDOWN I

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power-law-breakdown

# same as before EXCEPT no need to specify a

# hardening function

#

# - Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK 1 USER_DEFINED

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson-Cook temperature dependence

I
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#

MELTING TEMPERATURE = <real> ()melt

REFERENCE TEMPERATURE = <real> Oref

TEMPERATURE EXPONENT = <real> M

#

# User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

#

# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR 1 POWER_LAW 1 VOCE 1 USER_DEFINED

#

# Specifications for Linear, Power-law, and Voce same as above

#

# User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic hardening function name

#

# - Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK 1 POWER_LAW_BREAKDOWN I

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Specifications for Johnson-Cook, Power-law-breakdown same as before

# EXCEPT no need to specify a hardening function

# AND should be preceded by YIELD

#

# As an example for Johnson-Cook yield rate dependence,

#

YIELD RATE CONSTANT <real> CY

YIELD REFERENCE RATE = <real> EY0
#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK 1 POWER_LAW_BREAKDOWN I

RATE_INDEPENDENT (RATE_INDEPENDENT)

#

# Syntax same as for yield parameters but with a HARDENING prefix

#

# - Temperature dependence

#

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK 1 USER_DEFINED I

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

# Johnson-Cook temperature dependence

#
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YIELD MELTING TEMPERATURE = <real> 6rnelt
YIELD REFERENCE TEMPERATURE = <real> OrYef

YIELD TEMPERATURE EXPONENT = <real> MY

# User-defined temperature dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_name

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK I USER_DEFINED I

TEMPERATURE INDEPENDENT (TEMPERATURE INDEPENDENT)

Syntax for hardening constants same as for yield but

with HARDENING prefix

END [PARAMETERS FOR MODEL CAZACU_PLASTICITY]

The Cazacu plasticity model is an isotropic plasticity model that accounts for tension/compression
asymmetry in yield.. This model is used primarily for modeling the plastic deformation of HCP
metals which can show significant tension/compression asymmetry. As is common to other plas-
ticity models in Lamé, the Cazacu plasticity model uses a hypoelastic formulation. As such, the
total rate of deformation is additively decomposed into an elastic and plastic part such that

Dii = D + (18.24)

The objective stress rate, depending only on the elastic deformation, may then be written as,

o

Crij ijkl
e

where Cifid is the fourth-order elastic, isotropic stiffness tensor.

The yield surface for the Cazacu plasticity model, f , may be written,

(18.25)

f (0" Pi) = (0- ii) — (e, Pi) , (18.26)

in which V' and P are the equivalent plastic strain and equivalent plastic strain rate respectively,
while 0 and 0- are generically the effective stress and flow stress. Broadly speaking, the flow stress
gives the size of the current yield surface. For the Cazacu plasticity model, the effective stress is
given as,

(o - ij) = {h(a, k)[(Is ksi)a + (1s21 — ks2)a + (1s31 — ks3)a]}1/ a (18.27)

with s i being the principal deviatoric stresses, k and a are model parameters describing asymme-
try in tension/compression along with the shape of the yield surface. The function h(a, k) is a
normalizing factor that is set so that the effective stress for a uniaxial stress state is cr
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h =
((2(1 O)a + 2(1 + k)a)

3 a

(18.28)

The parameter k is calculated from the tension/compression asymmetry. The ratio of the yield
stress in tension to the yield stress in compression is

The value of k is

r = o_T
Y Y

1 — h(r) [  2a — 2ra lia
k = ; h(r) =

1 + h(r) (20a — 2]

(18.29)

(18.30)

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

I) = •  aDi; o (18.31)

where y is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f , it can also be shown that y= P, i.e. the consistency parameter is equal to the rate of the
equivalent plastic strain.

In the command blocks that define the Cazacu plasticity model:

• See the User's Guide chapter on Material Models for more information on elastic constants
input.

• The reference nominal yield stress, 6-, is defined with the Y I E LD S TRE S s command line.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONS TAN T command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXP ONENT command line.

• The Lfiders strain for a power law hardening model is defined with the LUDERS S TRAIN
command line.

• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.
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• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

• The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the RATE
MULTIPLIER command line.

• The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

• The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

• For a Johnson-Cook temperature multiplier, the melting temperature, °melt, is defined via the
MELTING TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the reference temperature, Oref, is defined via the
REFERENCE TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the temperature exponent, M, is defined via the
TEMPERATURE EXPONENT command line.

• The optional rate multiplier for the yield stress for the decoupled flow stress hardening model
is defined with the YIELD RATE MULTIPLIER command line.

• The optional rate multiplier for the hardening for the decoupled flow stress hardening model
is defined with the HARDENING RATE MULTIPLIER command line.

• The optional temperature multiplier for the yield stress for the decoupled flow stress harden-
ing model is defined with the YIELD TEMPERATURE MULTIPLIER command line.

• The optional temperature multiplier for the hardening for the decoupled flow stress hardening
model is defined via the HARDENING TEMPERATURE MULTIPLIER command line.

Output variables available for this model are listed in Table 18.4.
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Table 18.4: State Variables for CAZACU PLASTICITY Model (Section 18.9)

Name Description
EQPS equivalent plastic strain, kP
EQDOT equivalent plastic strain rate, kP
SEFF effective stress, 0
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18.10 Cazacu Orthotropic Plasticity Model

BEGIN PARAMETERS FOR MODEL CAZACU_ORTHOTROPIC_PLASTICITY

# Elastic constants

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> A

TWO MU = <real> Zo

# Yield surface parameters

YIELD STRESS = <real> cry

A = <real> a (4.0)

# tension/compression asymmetry

KP = <real> e
KPP = <real> k"

# orthotroppic parameters

CP11

CP22

CP33

CP12

CP23

CP31

CP44

=

=

=

=

=

=

=

<real> cfli

<real> c.22

<real> c33
<real> '12
<real> c 3

<real> cfm

<real> cd,4
CP55 = <real> c'55
CP66 = <real> C'66

CPP11 = <real> cfl'i

CPP22 = <real> c22
CPP33 = <real> G

CPP12 = <real> cT2

CPP23 = <real> G

CPP31 = <real> qi

CPP44 = <real>

CPP55 = <real> c"55
CPP66 = <real>

# Hardening model

HARDENING MODEL = LINEAR I POWER_LAW I VOCE I USER DEFINED I

FLOW_STRESS I DECOUPLED_FLOW_STRESS I CUBIC_HERMITE_SPLINE
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JOHNSON_COOK 1 POWER_LAW_BREAKDOWN

#

# Linear hardening

#

HARDENING MODULUS = <real> LC

#

# Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN <real> EL (0.0)

#

# Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

# Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening function name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> to

#

# Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

# User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

# Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

#

#

# Following Commands Pertain to Flow_Stress Hardening Model

#

# - Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR I POWER_LAW 1 VOCE I

USER_DEFINED
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# Specifications for Linear, Power-law, and Voce same as above

# User defined hardening

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

- Rate dependence

RATE MULTIPLIER = JOHNSON_COOK I POWER_LAW_BREAKDOWN I

RATE_INDEPENDENT (RATE_INDEPENDENT)

# Specifications for Johnson-Cook, Power-law-breakdown

same as before EXCEPT no need to specify a

hardening function

- Temperature dependence

TEMPERATURE MULTIPLIER = JOHNSON_COOK I USER_DEFINED I

TEMPERATURE INDEPENDENT (TEMPERATURE INDEPENDENT)

# Johnson-Cook temperature dependence

MELTING TEMPERATURE = <real> °melt

REFERENCE TEMPERATURE = <real> Oref

TEMPERATURE EXPONENT = <real> M

# User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

# Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

- Isotropic Hardening model

ISOTROPIC HARDENING MODEL = LINEAR I POWER_LAW I VOCE I USER_DEFINED

# Specifications for Linear, Power-law, and Voce same as above

# User defined hardening

ISOTROPIC HARDENING FUNCTION = <string>isotropic hardening function name

- Rate dependence

YIELD RATE MULTIPLIER = JOHNSON_COOK I POWER_LAW_BREAKDOWN I

RATE_INDEPENDENT (RATE_INDEPENDENT)
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# Specifications for Johnson-Cook, Power-law-breakdown same as before

EXCEPT no need to specify a hardening function

AND should be preceded by YIELD

As an example for Johnson-Cook yield rate dependence,

YIELD RATE CONSTANT = <real> CY

YIELD REFERENCE RATE = <real> fY0

HARDENING_RATE MULTIPLIER JOHNSON_COOK I POWER_LAW_BREAKDOWN

RATE_INDEPENDENT (RATE_INDEPENDENT)

Syntax same as for yield parameters but with a HARDENING prefix

- Temperature dependence

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK I USER DEFINED I

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

# Johnson-Cook temperature

YIELD MELTING TEMPERATURE

YIELD REFERENCE TEMPERATURE

YIELD TEMPERATURE EXPONENT

# User-defined temperature

dependence

= <real> 6rne 1 t

= <real> Cf

= <real> MY

dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_name

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK I USER_DEFINED I

TEMPERATURE INDEPENDENT (TEMPERATURE INDEPENDENT)

Syntax for hardening constants same as for yield but

with HARDENING prefix

END [PARAMETERS FOR MODEL CAZACU_ORTHOTROPIC_PLASTICITY]

The orthotropic Cazacu plasticity model is an extension of the tension/compression asymmetry
model of Cazacu to account for orthotropic response. As is common to other plasticity models
in Lamé, the Cazacu plasticity model uses a hypoelastic formulation. As such, the total rate of
deformation is additively decomposed into an elastic and plastic part such that

= + D. (18.32)

The objective stress rate, depending only on the elastic deformation, may then be written as,
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Crij= ijkl ke

where Cod is the fourth-order elastic, isotropic stiffness tensor.

The yield surface for the orthotropic Cazacu plasticity model, f , may be written,

(18.33)

f (0" , , = (0" j) — P) (18.34)

in which sp and P are the equivalent plastic strain and equivalent plastic strain rate respectively,
while and 6- are generically the effective stress and flow stress. Broadly speaking, the flow stress
gives the size of the current yield surface. For the orthotropic Cazacu plasticity model, the effective
stress is given as,

02 (0" j) = {ka, k', — kx)a + 041 — le5/2)(1 + (141 — 4)61

(18.35)
11 a

+ (14' k" a + (1 s 2" s2")a (1 s' — r 531a 1}

with s; and being the principal transformed stresses, and le, r and a are model parameters
describing the asymmetry in tension/compression along with the general shape of the yield surface.
The transformed stresses, which account for the anisotropy, are given by

Sij = C; jklS kl ; stitj = C;IjklSkl

In matrix notation in the material coordinate system, these transformations are

and

‘
- t

41 C11 C12 C31

42 Cf1 2 Cf22 C;,3

43 C31 Cf 23 Cf 33

42

{

> =

000eoo
S 3 0 0 0

41 , _ O O O

000
000
000
44
0 C55 O

c O O 66_

{4'1 - „ ''2 ''1 o o o 
_

2s"2 c_.'1,2 c'2,2 C2,13 O O O

s c'3'1 c1213 cf313 O O O

S12 O O O c"4 O O
O O O O c'5'5 O

s'3/1 O O O O O c"

4

66_

t313

s;

S22

S33

S12

S23

S31

S33

S12

S23

S31

(1 8.36)

(18.37)

(18.38)
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The <i and cfi'i are model parameters governing the anisotropy. The normalizing coefficient, h,
depends on the model parameters and is computed so that the effective stress for a uniaxial stress
state is cr.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

• P •  80 (18.39)Du = y

where y is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f, it can also be shown that y = P, i.e. the consistency parameter is equal to the rate of the
equivalent plastic strain.

In the command blocks that define the orthotropic Cazacu plasticity model:

• See the User's Guide chapter on Material Models for more information on elastic constants
input.

• The reference nominal yield stress, Cr, , is defined with the YIELD STRESs comrnand line.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the HARDENING
MODULUS command line.

• The hardening constant for a power law hardening model is defined with the HARDENING
CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the HARDENING
EXPONENT command line.

• The Lfiders strain for a power law hardening model is defined with the LUDERS STRAIN
command line.

• The hardening function for a user defined hardening model is defined with the HARDENING
FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the CUBIC SPLINE
TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS command lines.

• The isotropic hardening model for the flow stress hardening model is defined with the
I SOTROP IC HARDENING MODEL command line.

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the RATE
MULTIPLIER command line.
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• The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

• The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

• For a Johnson-Cook temperature multiplier, the melting temperature, °melt, is defined via the
MELTING TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the reference temperature, Ord, is defined via the
REFERENCE TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the temperature exponent, M, is defined via the
TEMPERATURE EXPONENT command line.

• The optional rate multiplier for the yield stress for the decoupled flow stress hardening model
is defined with the YIELD RATE MULTIPLIER command line.

• The optional rate multiplier for the hardening for the decoupled flow stress hardening model
is defined with the HARDENING RATE MULTIPLIER command line.

• The optional temperature multiplier for the yield stress for the decoupled flow stress harden-
ing model is defined with the YIELD TEMPERATURE MULTIPLIER command line.

• The optional temperature multiplier for the hardening for the decoupled flow stress hardening
model is defined via the HARDENING TEMPERATURE MULTIPLIER command line.

Output variables available for this model are listed in Table 18.5.

Table 18.5: State Variables for CAZACU ORTHOTROPIC PLASTICITY Model (Section 18.10)

Name Description
EQPS equivalent plastic strain, kP
EQDOT equivalent plastic strain rate, kP
SEFF effective stress, 0
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18.11 Skorohod-Olevsky Viscous Sintering (SOVS)

BEGIN PARAMETERS FOR MODEL SOVS

#

# Elastic constants

#

YOUNGS MODULUS = <real> E
POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G
BULK MODULUS = <real> K
LAMBDA = <real> A

TWO MU = <real> 2µ

#
# Initial relative density

#

RHOO = <real> P0

#

# Normalized shear viscosity relative density dependence

#

Al = <real> al

B1 = <real> bl

#

# Normalized bulk viscosity relative density dependence

#

A2 = <real> a2

B2 = <real> b2

C2 = <real> c2

#

# Effective sinter stress relative density dependence

#

SIGMA_SO = <real> crs0

A3 = <real> a3

B3 = <real> b3

#

# Skeleton shear viscosity temperature dependence

#

A4 = <real> a4

B4 = <real> b4
C4 = <real> C4

TO = <real> 00

#

# Numerical integration parameters

#

BETA = <real> p (0.5)
TOL = <real> tol (1.0E6)

END [PARAMETERS FOR MODEL SOVS]
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The Skorohod-Olevsky viscous sintering (SOVS) model is a continuum scale model for the evo-
lution of porosity and deformation of ceramic materials through sintering. This implementation
is intended to capture geometric evolution of a body through such a process thereby enabling the
design and manufacture of complex 3D components and/or structures.

Here, the model is a linear-viscous form of the non-linear viscous incompressible model of
Olevsky [12] based on the concepts of plastic porous bodies. The specific implementation used
here is that of Argfiello and coworkers [13]. Like other inelastic models, an additive split in the
rate of deformation,

Dii = + (18.40)

is used in which the elastic constitutive relation may be written as,

ijkl il • (18.41)

For the inelastic response, a constitutive relation may be derived via thermodynamic analysis and
dissipation considerations (see [12]) producing an inelastic (viscous) strain rate, BT.2, of the form,

in =  
0-;; + 0"u/3 crs (p)(5,,

2770 (0) (P) 6171)(9)1A (P)
(18.42)

with no, 0, o-s, and tfr, being the shear viscosity of the fully dense skeleton, normalized shear
viscosity, sintering stress, and normalized bulk viscosity. A split between the contributions of the
deviatoric, o-;j, and volumetric, crkkI3, components of the Cauchy stress, crij = o-;./ + (1/3) 0-kkooif is
also utilized. Note, in (18.42) explicit dependencies of the various terms on relative density, p, and
absolute temperature, 19, are indicated although for simplicity will be neglected in the remainder.
Importantly, the relative density, p, is defined as,

Pt 
P =

PT
(18.43)

where PT is the theoretical density and pt is the current material density at time t. Conservation of
mass may be invoked to show the time rate of change of the relative density, /5, is simply,

= (18.44)

Based on previously performed kinetic Monte-Carlo analysis, Argfiello and coworkers [13] used
the following density dependent relations,
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(p) = au9b (18.45)

(P)

crs (P)

õrs(P)

=

=

=

P
b2

(18.46)

(18.47)

(18.48)

a2 (1 _ 02,

crsoci-s (P),

a3pb3.

In (18.47) it can be observed that the sintering stress is decomposed into two parts: (i) the local
sintering stress, a-so, and (ii) the relative density dependent normalized effective sintering stress,
5- s. With respect to the latter, the functional representation is given in (18.48). For the former, the
value may be approximated as,

3a
crso =

r0
(18.49)

with a being the surface tension and ro the average grain size. In the current implementation, only
the local sintering stress is input to the model as the surface tension and grain size are unneeded
elsewhere.

The temperature dependence of the shear viscosity of the fully dense skeleton was proposed in a
previous effort by Olevsky et al. [14] and is given as,

710 (0) = a4
(  0  )2 0 

b4 C4,
\ 00 00

(18.50)

in which 00 is a reference temperature. During the efforts of Argüello et al. [13], alternative forms
of this dependence based on either an Arrhenius relationship or the introduction of an additional
variable for grain growth were put forth. Notably, the latter showed good agreement with exper-
imental measurements although at the time only a 1D form was considered as alterations to the
numerical scheme were needed for the 3D implementation. For the current model, the previous
quadratic form is used as that was the expression validated against experiments.

For details on the SOVS model, please see [13].

In the command blocks that define the SOVS model:

• See the User's Guide chapter on Material Models for more information on elastic constants
input.

• The initial relative density, Po, (0 < Po < 1) is defined with the RHO 0 command line.

• The modulus of the relative density dependence of the normalized shear viscosity, al, is
defined with the A I command line.

• The exponent of the relative density dependence of the normalized shear viscosity, b1, is
defined with the B I command line.
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• The modulus of the relative density dependence of the normalized bulk viscosity, a2, is
defined with the A2 command line.

• The exponent of the relative density dependence of the normalized bulk viscosity, b2, is
defined with the B2 command line.

• The exponent of the relative porosity dependence of the normalized bulk viscosity, c2, is
defined with the C2 command line.

• The local sintering stress, crso, is defined with the s 1 Giva s 0 command line.

• The modulus of the relative density dependence of the normalized effective sintering stress,
a3, is defined with the A3 command line.

• The exponent of the relative density dependence of the normalized effective sintering stress,
b3, is defined with the B3 command line.

• The quadratic constant of the skeleton shear viscosity on normalized temperature, a4, is
defined with the A4 command line.

• The linear constant of the skeleton shear viscosity on normalized temperature, b4, is defined
with the B4 command line.

• The constant of the skeleton shear viscosity on normalized temperature, c4, is defined with
the C4 command line.

• The reference temperature used with the skeleton shear viscosity, 00, is defined with the TO
command line.

• The type of integration is controlled by the integration selection parameter, )3 (0 )3 < 1),
is defined with the BETA command line. A value of one corresponds to implicit constitutive
integration while zero is specified for explicit integration. The default value is 0.5.

• The tolerance of convergence for the non-linear problem associated with constitutive model
integration, tol, may be specified by the TOL command line. A default value of 1.0 x 106 is
used if no value is specified.

• It is recommended that the default values of constitutive integration parameters (fl, tol) be
used. Alternative selections remain an unverified development option.

Output variables available for this model are listed in Table 18.6.
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Table 18.6: State Variables for SOVS Model (Section 18.11)

Name Description
RHO relative density, p
RHO_DOT time rate of change of density, p
EP S I LON_IN_DOT inelastic strain rate, šiii.;
I TE RAT IONS constitutive integration convergence iterations, iter
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18.12 Hydra Plasticity

18.12.1 Summary

The hydra plasticity model has the following features:

• Isotropic elastic behavior, with elastic constants that may optionally depend on temperature,

• A Hill yield surface that may undergo isotropic hardening,

• Tabular definition of the material's hardening behavior, with dependence on equivalent plas-
tic strain and optional dependence on temperature, and/or equivalent plastic strain rate,

• Option inclusion of material failure,

• Tabular definition of the material's failure strain, with dependence on stress triaxiality and
optional dependence on temperature, equivalent plastic strain rate, and/or Lode angle (via a
Lode parameter),

• Linear material strength and stiffness degradation following failure initiation that is based on
the fracture energy for the material and is normalized to the element characteristic length to
reduce mesh dependencies,

• User specified value of decay at which an integration point is flagged for removal from the
analysis, and

• Optional inclusion of heating caused by plastic deformation of the material.

18.12.2 User Guide

BEGIN PARAMETERS FOR MODEL HYDRA_PLASTICITY

# Elastic Constants

YOUNGS MODULUS = <real> E
YOUNGS FUNCTION = <string> youngs_func_name fE(T0
POISSONS RATIO = <real> v

POISSONS FUNCTION = <string> poissons_func_name J;(rt)

# Material Coordinates System Definition

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 11213

ALPHA = <real> al (degrees)

SECOND DIRECTION FOR ROTATION = <real> 11213

SECOND ALPHA = <real> a2 (degrees)

# Yield Surface Parameters

172



R11 = <real> R11
R22 = <real> R22

R33 = <real> R33

R12 = <real> R12
R23 = <real> R23

R31 = <real> R31

# Hardening Parameters

HARDENING FUNCTION = <string> hardening_func_name

PLASTIC STRAIN RATE LOG FLAG = <bool>

# Plastic Heating Parameters

SPECIFIC HEAT

SPECIFIC HEAT FUNCTION

INELASTIC HEAT FRACTION

ADIABATIC ANALYSIS FLAG

# Failure Parameters

FAILURE FUNCTION

FRACTURE ENERGY

true o r false
fH (0, , Tt)

= <real> C

= <string> specific_heat_func_name k(TO

= <real> 77

= <bool> true or false

= <string> failure func name

= <real> Gf
ELEMENT REMOVAL DECAY VALUE = <real> (p,

FAILURE ANALYSIS FLAG = <bool> true or false
END [PARAMETERS FOR MODEL HYDRA_PLASTICITY]

fF (x, ,C0p,Tt)

• The elastic constants, E and v, are defined by the YOUNGS MODULUS and POI s SONS RATIO
command lines, respectively. Both of these values must be defined by the user, there are no
defaults.

• The temperature scaling factor functions for E and v are defined by the YOUNGS
MODULUS FUNCTION and POISSONS RATIO FUNCTION command lines, respectively. The
youngs_func_name and poissons_func_name reference functions defined by separate
FUNCTION command blocks. These functions should define temperature dependent scal-
ing factors that when applied to E and v (defined by the YOUNGS MODULUS and POISSONS
RATIO command lines) will produce temperature adjusted E and v values. Definition of
these functions is optional. If not defined by the user a constant temperature scaling factor
of 1.0 will be used.

• The hydra plasticity material model uses an element specific coordinate frame. The
coordinate frame used is specified by the COORDINATE SYSTEM command line, where
the coordinate_system_name references a coordinate system defined by a separate
COORDINATE SYSTEM command block. For the hydra plasticity model, this coordinate
system can be either a rectangular or a cylindrical coordinate system. The COORDINATE
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SYSTEM defines a local R, S, and T frame at each element. This initial coordinate system can
be additionally rotated to give the final material directions at each material point.

The first rotation of the initial coordinate system is defined using the DIRECTION FOR
ROTATION and ALPHA command lines. The axis for rotation of the initial coordinate system
is specified by the DIRECTION FOR ROTATION command line, 1 corresponds to the initial
coordinate system local R axis, 2 corresponds to the initial coordinate system local s axis,
and 3 corresponds to the initial coordinate system local T axis. The right hand rule angle of
rotation about this axis is given by ALPHA. This rotation yields an intermediate coordinate
system.

A secondary rotation of the intermediate coordinate system may be defined using the
SECOND DIRECTION FOR ROTATION and SECOND ALPHA command lines. The axis for
rotation of the intermediate coordinate system is specified by the SECOND DIRECTION FOR
ROTATION command line, 1 corresponds to the intermediate coordinate system local R axis,
2 corresponds to the intermediate coordinate system local s axis, and 3 corresponds to the
intermediate coordinate system local T axis. The right hand rule angle of rotation about this
axis is given by SECOND ALPHA. The resulting coordinate system gives the final R, s, and T
coordinate frame for the material directions.

At a minimum, the COORDINATE SYSTEM command line must be spec-
ified. The DIRECTION FOR ROTATION, ALPHA, SECOND DIRECTION FOR ROTATION,
and SECOND ALPHA command lines are optional, and default to 1, 0.0, 2, and 0 . 0, respec-
tively (effectively specifying no additional rotations of the coordinate system specified by
the COORDINATE SYSTEM command line).

• The ratio of the normal yield stress to the reference yield stress (o=r) in the ei i material
direction is defined with the R11 command line. The default is 1.0.

• The ratio of the normal yield stress to the reference yield stress (Or) in the e2e2 material
direction is defined with the R2 2 command line. The default is 1.0.

• The ratio of the normal yield stress to the reference yield stress (cir) in the e3e3 rnaterial
direction is defined with the R33 command line. The default is 1.0.

• The ratio of the shear yield stress to the reference shear yield stress in the ele2 material
direction is defined with the R12 command line. The default is 1.0. Note that the reference

1 -shear stress is equal to 7 crr.

• The ratio of the shear yield stress to the reference shear yield stress in the e2e3 material
direction is defined with the R2 3 command line. The default is 1.0. Note that the reference
shear stress is equal to ,ici-r.

• The ratio of the shear yield stress to the reference shear yield stress in the e3e1 material
direction is defined with the R31 command line. The default is 1.0. Note that the reference
shear stress is equal to .\+Ci-r.

• The hardening function is defined with the HARDENING FUNCTION command line. The
hardening_func_name references a function defined by a separate FUNCTION command
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block. The hardening function must be defined using a piecewise multivariate function
(TYPE = PIECEWISE MULTIVARIATE). The piecewise multivariate function allows the
user to define the behavior of a single dependent variable with respect to one or more in-
dependent variables. In this case, hardening (which defines the reference yield stress) can
be defined with dependencies on equivalent plastic strain e , and optionally on equivalent
plastic strain rate e , and temperature Tt. The hardening function must be defined by the
user and must include dependence of the reference yield stress on equivalent plastic strain.
All other dependencies are optional.

Shown below is an example of the format required to define a hardening function using a
piecewise multivariate function:

begin function multivariate_hardening_function

type = piecewise multivariate

column titles plastic strain plastic strain rate temperature \#

yield_stress

begin values

0.00 -3.0 100.0 1.52294e+09

0.10 -3.0 100.0 1.76488e+09

0.20 -3.0 100.0 1.78225e+09

0.30 -3.0 100.0 1.79298e+09

0.40 -3.0 100.0 1.80086e+09

0.50 -3.0 100.0 1.80713e+09

end

end

The column titles line contains the dependent variable yield_stress in the last
column and the independent variables plastic_strain, plastic_strain_rate, and
temperature in the first three columns. The specific column name shown must be used
if dependency on the variable is desired. The piecewise multivariate function requires that
the independent variables create a fully populated grid where points in each dimension are
evenly spaced. For performance reasons, the independent variables that are expected to vary
the most in the analyses should be placed in the left columns, and variables that are expected
to vary the least in the right columns.

• The ..fl ag PLASTIC STRAIN RATE LOG FLAG is used to specify whether the data for e
provided in the hardening function is 1og10 or not. If the command line PLASTIC STRAIN
RATE LOG FLAG is set equal to true, the values provided in the piecewise multivariate func-
tion defining the hardening for the material are 1og10 (e). This is the case in the example
provided above, where the equivalent plastic strain rate value given as -3.0 corresponds to
an actual strain rate of 0.001 1/s. The default setting is false.

• The value for the specific heat, C, which is the amount of heat required to change the tem-
perature of a unit mass of the material by one degree, is defined with the SPECIFIC HEAT
command line. The specific heat must be specified by the user, there is no default value.

• The temperature scaling factor function for C is defined by the SPECIFIC HEAT FUNCTION
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command line. The specific_heat_func_name references a function defined by a sepa-
rate FUNCTION command block. The function should define temperature dependent scaling
factors that when applied to C (defined by the SPECIFIC HEAT command line) will produce
the temperature adjusted C value. Definition of this function is optional. If not defined by
the user, a constant temperature scaling factor of 1.0 will be used.

• The value for the inelastic heat fraction, rl, is defined with the I NE LAS T IC HEAT FRACTION
command line. The inelastic heat fraction defines the fraction of plastic work that acts to heat
the material. The default value is 1.0.

• The flag ADIABATIC ANALYSIS FLAG is used to specify whether an adiabatic analysis
should be performed. If the command line ADIABATIC ANALYSIS FLAG is set equal to
true, the material model will calculate a change in temperature in the material due to plas-
tic work, and add the plastic work temperature change to the externally defined tempera-
ture, before determining temperature dependent material properties. If the command line
AD IABAT I C ANALYSIS FLAG is set equal to false, the material model will still calculate
the plastic work performed on the material, but will make no adjustment to the externally
defined temperature before determining temperature dependent material properties. The ma-
terial model will continue to calculate the plastic work heat increment and heat flux, making
them available through state variables for coupled analysis. The default setting is false.

• The failure function is defined with the FAILURE FUNCTION command line. The failure_
func name references a function defined by a separate FUNCTION command block. The
failure function, like the hardening function, must be defined using a piecewise multivariate
function (TYPE = PIECEWISE MULTIVARIATE). The failure function defines the failure
strain, with dependencies on stress triaxiality x, and optionally on equivalent plastic strain
rate PP, temperature Tt, and Lode parameter Op (where Op is calculated as cos(30) and 0
is the Lode angle). The failure function need only be defined when FAILURE ANALYSIS
FLAG is set equal to true. When defined, the failure function must include dependence of the
failure strain on stress triaxiality. All other dependencies are optional.

Shown below is an example of the format required to define a failure function using a piece-
wise multivariate function:

begin function multivariate_failure_function

type = piecewise multivariate

column titles stress_triaxiality plastic_strain_rate temperature \#

lode_parameter failure_strain

begin values

-0.333 -3.0 100.0 -1.00 102.816

0.000 -3.0 100.0 -1.00 0.288

0.333 -3.0 100.0 -1.00 0.431

0.666 -3.0 100.0 -1.00 0.395

0.999 -3.0 100.0 -1.00 0.275

end

end
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The column titles line contains the dependent variable failure_strain in the last
column and the independent variables st re s s_t r iaxial ity, plast ic_strain_rate,
temperature, and lode_parameter in the first four columns. The specific column name
shown must be used if dependency on the variable is desired. The piecewise multivariate
function requires that the independent variables create a fully populated grid where points
in each dimension are evenly spaced. For performance reasons, the independent variables
that are expected to vary the most in the analyses should be placed in the left columns, and
variables that are expected to vary the least in the right columns.

• The fracture energy for the material, Gf, the energy required to form a unit area of crack
surface, is defined with the FRACTURE ENERGY command line. This default value is 1.0.

• The decay value at which an element or integration point is flagged for removal from the
analysis, yor, is specified by the ELEMENT REMOVAL DECAY VALUE command line. The
default value is 0.001.

• The flag FAILURE ANALYSIS FLAG is used to specify whether the failure modeling capa-
bilities of the material model should be enabled. If the command line FAILURE ANALYSIS
FLAG is set equal to true, the material model will include failure. If the command line
FAILURE ANALYSIS FLAG is set equal to false, the failure capabilities of the material
model will be disabled. In the latter case, the user need not define a failure function, fracture
energy, or element removal decay value. The default setting is false.

Output variables available for this model are listed in Table 18.7.

18.12.3 Theory

Strain Decomposition

The hydra plasticity model makes use of an additive decomposition of the strain tensor into elastic
and inelastic (plastic) components. The rate form of the additive decomposition is given by:

= e + e

where is the total strain rate that consists of an elastic (e) and plastic (e) component.

Elasticity

In the elastic regime, the true stress o- is related to the total strain s, by Hooke's law:

(18.51)

cr = C(TOs (18.52)

where C(T) is the fourth order elastic moduli tensor that may optionally depend on the material
temperature Tt. Isotropic elasticity is assumed, so the elastic moduli tensor is fully defined by
two elastic constants. In the hydra plasticity model the two elastic constants are constrained to be
Young's modulus and Poisson's ratio. These constants each may optionally depend on temperature
T.
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Table 18.7: State Variables for HYDRA PLASTICITY Model (Section 18.12)

Name Description
ITERATIONS Number of iterations required for convergence of the New-

ton algorithm.
SEFF Effective Stress

0 (G), note may ~ G r e = AIV
SBAR Yield stress based on the current size of the yield surface.

Cr
EQPS Equivalent Plastic Strain

Vi = fotkP dt

EQPS_RATE Equivalent Plastic Strain Rate

e = \ PEP : ti)3

HEAT_FLUX Heat Flux
e = q (cr : e3)

HEAT_INCREMENT Heat Increment
ArP

TEMP_TOTAL Total temperature including change in temperature due to
plastic heating.
7', = T + ATp, where T is the externally defined tempera-
ture.

EQP S_D T Total accumulated change in temperature due to plastic
heating.
ATp

FAIL_S TRESS Effective stress at the time of failure initiation.

0-‘ = 34

UFAIL Displacement over which the integration point's strength
and stiffness are reduced to zero following failure initiation.
f — 2G f
U — 04

DAMAGE Damage, equal to 0 at failure initiation, increasing to 1 at
full material strength and stiffness degradation.
D

PRESSURE Pressure
p = —*(cr)

SECONDSTRESSINVARIANT_ _ Second Stress Invariant

J2 = [tr (o-2) — tr (0-)21

THIRD S T RE S SINVARIANT_ Third Stress Invariant
J3 = 3 [tr (o-3) — tr (o-2) tr (a-) + & tr (cr)3]

STRESS_TRIAXIALITY Stress Triaxiality

x = — 
P
,_
L, e

LODE_PARAMETER Lode Parameter
1.5

Op = cos (30), where 0 = ( 23) R.) is the Lode angle.
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Yield Surface

The hydra plasticity model makes use of the Hill yield surface. The Hill yield surface may be
orthotropic, and assumes orthogonal principal material directions. The yield surface is defined as
follows,

\
= F (o-22 — 0-33)2 + G (0-33 - °-11)

2
 H (0-11 — 0-22)2

(18.53)

+2Lo-i3 + 2Mo-31 + 2Noq2

where the coefficients F, G, H, L, M, and N are given by the following.

F (0=r)2[ 1 1 1
(5_)2

L
2

+

(Gr22)2 (Cry33)2 (crY11)2

=; 
2 (TY23)2

(0--r)2G 1 1 1
(0,02

M
[ 1

(18.54)
=

2

+

(cry33)2 (uylly (cry22)2 
1

; =
2
[ (TY31)2]

H = 
(o--r)2 1 + 1 1 

N = 
(0-_02

;
2 (cryily (cry22)2 (ay33)2 2

In Equation 18.54, O. o-Y2. 0j33, T12, TY23, and TY3i represent the three normal and three shear yieldt 2 
stresses in the three material coordinate directions, and o--r a reference yield stress that is defined
by the hardening function. The six independent yield stresses, are specified by the user through the
definition of the following six yield ratios.

MI 1 .\5TY12; R12 =
R11 = —

5- 5-

Ce22 R23 =
R22 =

o- o-

042,2
R33 = • R31 =

If all of the above ratios are set equal to 1.0 (Rii = 1) the Mises yield surface is recovered.

Hardening

(18.55)

The hydra plasticity model assumes isotropic hardening. Hardening of the material is defined by a
hardening function.

= fH (e, Ep, Tt) (18.56)
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The hardening function defines the reference yield stress (o=r) for the material. The hardening
function has dependence on the equivalent plastic strain (e), and optionally may depend on the
equivalent plastic strain rate (kP) and/or temperature (7;). The equivalent plastic strain is defined
as follows:

= fki3 dt
0

(18.57)

where kP is the equivalent plastic strain rate calculated from the plastic strain rates (e) as follows.

2e = -
3
EP :

Failure

(18.58)

Failure in the hydra plasticity model is comprised of two distinct phases. The first, pre-failure
initiation phase, involves the calculation of a failure initiation metric that is used to determine when
the failure initiation criterion has been met. The second, post-failure initiation phase, involves the
accumulation of damage in the material (with increasing plastic deformation) and the degradation
of the material's strength and stiffness.

The failure initiation criterion is strain based. The criterion is satisfied when the failure measure
(fm) equation is satisfied.

(x, kdp!Pcop, To > 1.0 (18.59)fm =

The failure strain ki; (x, Ep,Cop,Tt) is provided by the failure function fF, and is dependent on
stress triaxiality (x), and optionally on plastic strain rate (kP), Lode angle (0, through the Lode
parameter, Op), and/or temperature (7',). Stress triaxiality is calculated as follows:

px = — —
cr„

(18.60)

where p is the pressure and o-, is the effective stress. The pressure is given by the following,

and the effective stress by the following.

p = — —tr (o-)
3

cre = V3,12

(18.61)

(18.62)

In the above equation J2 is the second stress invariant and is calculated from the stress cr as follows.

J 2 = 2 [tr (49-2) — 3 tr (021 (18.63)
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The Lode parameter (Op) is a function of the Lode angle (0),

= 
j3) ( 3 )1.52 J2

where J3 is the third stress invariant calculated from the stress o- as follows.

J3 = 3 [tr (0-3) - tr (o-2) tr (o-) + 2 tr (03]
9

The Lode parameter is then calculated as follows.

(18.64)

(18.65)

Op = cos (30) (18.66)

Note that the Lode parameter can vary from -1.0 (triaxial compression) to 1.0 (triaxial tension),
with a value of 0.0 representing the pure shear stress state.

Once the failure initiation criterion has been satisfied, increasing plastic deformation of the material
results in the accumulation of damage (D). The rate of damage accumulation is governed by the
following rate equation:

LP'
= f

uf
(18.67)

where ef is the equivalent plastic strain rate associated with plastic deformation of the material
occurring after the initiation of failure, L is the characteristic length associated with the material
integration point (taken as 3VVipt, where Vipt is the volume of material associated with the material
integration point), and uf is the failure displacement. The failure displacement is calculated based
on the state of the material at the time of failure initiation as follows:

uf 
2Gf

= f (18.68)

where Gf is the material's fracture energy and ol is the effective stress at the instant of failure
initiation. The instantaneous damage value is therefore given by the following.

D = f Ddt (18.69)

It is important to note that the use of the characteristic length (L) associated with the material
integration point in Equation 18.67 is an approximate way to remove some of the mesh sensitivity
effects associated with material softening. The implementation attempts to get the amount of
energy dissipated by the failure process to match the fracture energy for the material, regardless of
the mesh size selected.

As damage accumulates in the material, both the strength and stiffness of the material are degraded.
This degradation takes the following form,
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ÕrD = (1 — D)cr‘ = couje- (18.70)

e (1-D)C = cpC (18.71)

where yo = (1 — D) defines the decay value for the damaged material, and cFrD and CD define the
damaged yield strength and elastic moduli tensor, respectively. The material strength and stiffness
are continually degraded with increasing plastic deformation until the material is fully damage
(D = 1) or the decay value (co) has reached a critical decay value specified by the user (cot.), at
which point the material point is flagged for removal from the analysis. It is important to note that
the pressure stresses are only degraded when the pressure is tensile (negative pressures). When
the pressure is compressive, the pressure stresses are not degraded, which results in the material
behaving increasingly like an incompressible fluid as damage is accumulated.

Plastic Heating

The hydra plasticity model includes the ability to calculate changes in the material's temperature
due to heating resulting from plastic deformation of the material. The heat flux (rP) per unit volume
associated with a given plastic strain rate (P') is calculated as:

rp = rice (18.72)

where I./ is a user defined inelastic heat fraction and cr is the instantaneous stress. Given the specific
heat C (TO for the material, which may be a function of the temperature (TO, the heat equation to
be solved at each material integration point is,

rtC(Tt)p = rP

where Tt is the temperature and Tf is the rate of change of the ternperature.

18.12.4 Implementation

Trial Stress

(18.73)

The hydra plasticity model uses a predictor-corrector algorithm for integrating the constitutive
model. Since the elastic constants of the hydra plasticity model may depend on temperature, the
fourth order elastic moduli tensor C is first updated to account for the current (step n) temperature
(1';'). If AD IABAT IC ANALYS I S FLAG is set equal to true, the current temperature is calculated
as follows:

11n) = T(n) + AT p(n-1) (18.74)

where T(n) is the current time step (n) externally defined temperature, and nn-1) is the accumulated
temperature change in the material resulting from plastic work up through the previous time step
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(n — 1). If AD IABAT I C ANALYSIS FLAG is set equal to false, the current temperature is taken
directly as the externally defined temperature.

7?) = T (n) (18.75)

Given the current step strain rate š(n), time increment At(n), and temperature adjusted elastic moduli
tensor C (TM , a trial stress is calculated assuming an elastic response:

C4n) = CT(n-1) C (in)) At(n) t(n) (18.76)

where 0-(n-1) is the converged stress state from the previous time step. If the trial stress lies inside
the yield surface (i.e. if ,p(o- rn)) < Cr (e(n) kP(n) , TM) , then the step is elastic, the plastic strain
increment and plastic strain rate are zero, and the stress is given by the trial stress (cF-7)). If the trial
stress is outside of the yield surface (i.e. if cfr(0- rn)) > 5- (e, kli(n) , TM) then the step will include
plastic deformation of the material.

Return Mapping Algorithm

When the elastic trial stress falls outside of the yield surface, the model uses an iterative algorithm
to determine the increment of plastic strain that occurs during the time step and the final stress state
in the material. During the solution process, normality is enforced:

R = AsP(n) — Ay(n) (9° = 0ao-
and the final stress state for the increment (n) is required to resides on the yield surface.

f = ° (Cr(n)) 113- (e(n) kijn) =

(18.77)

(18.78)

A Newton-Raphson search algorithm is implemented. Using Ay(k) (which conveniently is equal to
AVik)) and o-k as the solution variables, the iterative algorithm is as follows:

Ay(k+l) = Ay(k) + A (Ay)(k)

(k+ 1) 
= CT 

(k) 
+ 

A 
LAO-

(k)

A,„(k) =, p(n, k=0))-1 (n) (k)\
t tr cr )

where Ay" = 0 and o-m = CI-tr. The increment in plastic strain is given by:

f(k)

A (Ay)(k) = ook)

R(0Y(k)°°(k)ao-

ao-
(k)  `1"  HI(k)

aCT

(18.79)

(18.80)
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where f(k) and R(k) are defined for the kth increment using Equation 18.78 and 18.77 as follows:

f(k) (cr(k)) (v,(k) .÷..p(k) 

, 

(k))

t

AA (k)

R(k) = Aeli(k) - Ay(k) nP
80-

and the elastoplastic tangent (Y (k)) for the kth increment, as follows.

(k) = c (Ti(n,k=o)r + Ay
4,20(k)
afrao-

(18.81)

(18.82)

In Equation 18.80 the slope of the hardening curve (I/4k) is required. Because the hardening be-
havior in the hydra plasticity model may depend on a number of variables defined in a multivariate
function, the calculation of 1-1/(k) is performed using a finite difference approximation. This is han-
dle by incrementing the current equivalent plastic strain (VI° ) and updating the other parameters
(Ilk) and P(k)) upon which the hardening function depends based on the incremented plastic strain,
before the hardening function is evaluated to obtain the values used in the finite difference calcula-
tion. This approach ensures that the hardening slope appropriately captures not only the effect of
the change in plastic strain, but also the change in material temperature and strain rate generated
by a change in the plastic strain. Equations 18.80 and 18.82 also require the first and second par-
tial derivatives of 0(k) . Since 0 is known, the values are calculated at each step using the current
stress state (cr(k)) and predetermined analytical expressions (not described here). Finally, the search
direction in stress space (Acr(k) utilized in Equation 18.79 is given by the following.

Ao_(k) = _ (R(k) + A 
(D
7)(k)

acr
(18.83)

It has been observed that the Newton-Raphson algorithm described above does not always converge
when non von Mises yield surfaces are employed. To improve the robustness of the return mapping
algorithm, a line search is performed during each Newton-Raphson (k) iteration. This algorithm
takes the following form.

Ay(i) = Ay(k) au)A (Ay)(k)

(18.84)

0-( = cr(k) + a CD A 0-(k)

where a(i) E (0, 1] is the line search parameter that is determined iteratively using a simple algo-
rithm not described here. cim = 1 is used to initialize the line search. Note that if a(j) = 1 then the
exact Newton-Raphson algorithm search direction and magnitude is recovered. The Ay(k+1) and
04+1) values are then given by the converged (a(i- converged)s ) lines search values.
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Ay(k+1) = Ay(k) a(j=converged)A (Ay)(k)

(18.85)
()_(k+1) = 0_(k) + a( j=converged)A0_(k)

During each Newton-Raphson (k) and line search (j) iteration, the variables that affect the material
hardening and failure parameters are updated, and the hardening and failure functions re-evaluated.
These parameters include the plastic strain (e), plastic strain rate (kP), temperature (TO, stress
triaxiality (x), and lode parameter (Op). These parameters are calculated as follows, where m is
equal to either k or j depending on whether the process is occurring during the Newton-Raphson
(k outer) loop or the line search (j inner) loop of the return mapping algorithm.

(m)
= Ay(m)

. 
P 
(„,) Ayon)

_—
t(n)

= T(n) Anni)

n(m)
(m) =  X

0-e
On)

C(pm) = cos (30w)

In the above equations, the pressure (p(m)) is calculated as follows,

p(m) = — 3 tr  
(o-(m))

the effective stress is calculated as follows,

„_(m) ,/ \,/ 11rn)e 2

and the lode angle is calculated as follows.

Jr) 3 \ 1.5um) 

2 .4m))

(18.86)

(18.87)

(18.88)

(18.89)

(18.90)

(18.91)

(18.92)

(18.93)

41') and Jr) are the second and third stress invariants, respectively, that are calculated as follows.
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1 1
,(m) 2 = [tr (o-(m)2) 

3
— tr (0-(m)) 

2
]

J m) = 3 —
1 

[tr (o-("1 — tr (cr(m)2) tr (o-(m)) + —
2 
tr (o-(m))... 9

Plastic Heating

1

(18.94)

(18.95)

The hydra plasticity model includes the ability to calculate heating of the material resulting from
its plastic deformation. The heat flux increment (e(n) per unit volume for a given time step n is
calculated as:

(n) (n-1)1
(0 VT 1- 0- ) (n)

rP = q  : AsP
2

(18.96)

where 77 is a user defined inelastic heat fraction, 0-(n) is the current time step's stress, 0-(n -1) is the
previous time step's stress, and AsP(n) is the current time step's increment in plastic strain. The
temperature change added to the integration point resulting from plastic heating (6.7,10) is given by
the following:

= + A (ATp)(n) (18.97)

where Ari-1) is the accumulated temperature change added to the integration point resulting from

plastic heating up through the previous time step, and A (ATp)(n) is the additional increment in
temperature change resulting from the plastic deformation of the material during the current time
step, which is calculated as follows.

rP
(n)

(n)A (ATp) =  7,(0+7,(n-1)

pC  2

(18.98)

In Equation 18.98 p is the material density. Because the specific heat may be temperature de-
pendent, this equation is iteratively solved, with each successive iteration providing an updated
I?) .

Failure

Material failure is initiated in the model when the failure measure reaches or exceeds 1.0 (fm >
1.0). The failure measure is calculated as follows:

f m(n) = f m(n-1) Afm(n) (18.99)

The increment in the failure measure associated with the current time step (Afm(")) is calculated
as follows:
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Ae(")
Af m(n) =   (18.100)(x(n) kp(n) ®(;) e))

where AU(n) is the current step's increment in equivalent plastic strain, and ef (x(n) , p(n), (pn) , 7?))
is the failure strain for the current increment, provided by the failure function.

During the time step in which the failure measure just reaches or exceeds the failure initiation cri-
terion, the failure stress (o-‘,) and failure displacement (uf) are determined. This is done iteratively
during the line search portion of the return mapping algorithm, and consists of a process where the
line search parameter (c0) is successively modified until the failure measure just equals 1.0.The
value returned by the hardening function when this occurs is the stress utilized as the failure stress
(o-‘) and the failure displacement is calculated as follows.

f 2Gfu = f (18.101)

where G f is the material's fracture energy.

Once the failure initiation criterion has been satisfied, the yield strength of the material remains
constant and is set equal to the failure stress. In addition, increasing plastic deformation of the
material results in the accumulation of damage (D). Damage is calculated as follows:

w
D(")  D("-') 

LAe 
f

uf
(18.102)

where gn-1) is the damage accumulated in the material through the previous time step, Aef(n) is
the change in the equivalent plastic strain associated with the current time step (including only
plastic strains that have occurred after the failure initiation criterion has been satisfied), and L is
the characteristic length associated with the material integration point (taken as ,VVipt, where vip,
is the volume of material associated with the material integration point). As damage accumulates
in the material, both the strength, and indirectly, the stiffness of the material are degraded. This
degradation is accomplished by returning the damage adjusted stresses (o-D) at the conclusion of
the material integration step, as follows.

(n =) (1cr D  — D)o-(n) = cocr(n) (18.103)

where go = (1 — D) defines the decay value for the damaged material. This effectively results
in a response where the material strength and stiffness are degraded. It is important to note that
the pressure stresses are only degraded when the pressure is tensile (negative pressures). When
the pressure is compressive, the pressure stress components of o-(n) are not degraded as indicated
in Equation 18.103. The material strength and stiffness are continually degraded with increasing
plastic deformation until the material is fully damage (D = 1) or the decay value (yo) has reached
a critical decay value specified by the user Gar), at which point the material point is flagged for
removal from the analysis.
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18.12.5 Verification

The hydra plasticity model was verified through comparison of results from the material model
with results obtained from the general metal plasticity model in Abaqus/Explicit (Version 6.14). A
series of six element tests were designed to verify all of the hydra plasticity model's capabilities.

Description of Six Element Test Cases

Five test cases in total were performed. For each of the five test cases, six elements were loaded
using six different prescribed velocities - the goal being to test the hydra plasticity model performs
as expected for a variety of different stress states. These elements are not connected in any way, so
each of the six element test cases are actually six single element tests performed at the same time.
Elements 1, 2, and 3 were loaded to cause a tension stress state in the o-„, o-yy, and o-z, components
respectively. Elements 4, 5, and 6 were loaded to cause shear dominated stress states - though
not pure shear - with the dominant component of stress in the T„, Tyy, and Tzz and component
respectively. Figure 18.2 shows the six elements in an undeformed (top) and deformed (bottom)
configuration. The deformed configuration shown is chosen from an arbitrary state in time prior to
the failure of any of the elements and is intended only to illustrate the types of loadings applied.

A test case matrix was developed to verify the capabilities of the hydra plasticity model over a
range of inputs. Table 18.8 below shows the five test cases developed. Test cases 1 through 4 test
different combinations of low (300 K) and high (700 K) temperatures and load and high load rates
(resulting in a range of strain rates tested). Test cases 1 through 4 all have Hill ratios that vary
between 0.90 and 1.20. Test case 5 tests the adiabatic heating capability of the hydra plasticity
model. Because Abaqus does not allow adiabatic heating for a Hill surface all of the Hill ratios
were set to 1.0 in the hydra plasticity model to create a Mises yield surface.

Table 18.8: Hydra plasticity test case matrix

Test
Case

Temp
(K)

load rate
(m/s)

Failure
Included

Adiabatic Heating
Included

Hill Ratios (R11, R22,R33, R12, R23, R31)

1 300 1 Yes No 1.00, 1.15, 0.90, 1.00, 1.20, 0.95
2 700 1 Yes No 1.00, 1.15, 0.90,1.00, 1.20, 0.95
3 300 10 Yes No 1.00, 1.15, 0.90, 1.00, 1.20, 0.95
4 700 10 Yes No 1.00, 1.15, 0.90, 1.00, 1.20, 0.95
5 300 1 Yes Yes all 1.00 = Mises

A set of hardening data was defined for all five test cases. A python script was used to generate the
same data formatted for the hydra plasticity model and an Abaqus general metal plasticity model.
The hardening data used for the test cases was dependent on equivalent plastic strain, temperature,
and equivalent plastic strain rate. Figure 18.3 shows the data points used to define yield stress as a
function equivalent plastic strain at various temperatures and equivalent plastic strain rates. Both
the hydra plasticity model and the Abaqus general metal plasticity model use linear interpolation
between most of the data points to obtain the yield stress (the exception being the equivalent plastic
strain rate direction which for the test cases include the hydra plasticity model had the PLASTIC
STRAIN RATE LOG FLAG set to true and Abaqus by default uses log interpolation between for
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Figure 18.2: Undeformed (top) and deformed (bottom) shapes for the six element tests.

strain rate data).

A set of failure data was also defined for all five test cases. Again, a python script was used
to generate the same data formatted for the hydra plasticity model and an Abaqus general metal
plasticity model. The failure data used for the test cases was dependent on stress triaxiality, tem-
perature, equivalent plastic strain rate, and Lode angle (via the Lode parameter). Figure 18.4 shows
the data points used to define failure strain as a function of stress triaxiality at various temperatures,
equivalent plastic strain rates, and Lode parameters. Again, both the hydra plasticity model and the
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Figure 18.3: Hardening data used in all five test cases.

Abaqus general metal plasticity model use linear interpolation between the data points to obtain
the failure strain.

Comparison of Results

The five test cases were each run in Sierra using the hydra plasticity model, and Abaqus using the
general plasticity model. The results of the five test cases are presented in Figures 4 through 8.
Each of these figures presents the equivalent plastic strain in an element versus the unrotated stress
in the element in the dominant loading direction. For example, for element 1 which is loaded in the
o-,x component the y-axis represents the unrotated stress cr.,,,c; for element 4 which is dominantly
loaded in the component the y-axis represents the unrotated stress T„; etc.

Figure 18.5 shows the results from test case 1, where the temperature was set to 300 K and the
loading rate was 1 m/s. The figure shows that there is near perfect agreement between Sierra and
Abaqus for all of the tension loaded elements (elements 1, 2, and 3). As expected, the tension
loaded elements all fail at the same equivalent plastic strain since they all use the same failure data.
The agreement between Sierra and Abaqus is very close for the shear dominated loading elements
(elements 4, 5, and 6) with less agreement as the plastic strain increases.
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Figure 18.4: Failure data used in all five test cases.

Figure 18.6 shows the results from test case 2, where the temperature was set to 700 K and the
loading rate was 1 m/s. Again, the figure shows that there is near perfect agreement between Sierra
and Abaqus for all of the tension loaded elements (elements 1, 2, and 3). And again, as expected
the tension loaded elements all fail at the same equivalent plastic strain since they all use the same
failure data. Also, the agreement between Sierra and Abaqus is very close for the shear dominated
loading elements (elements 4, 5, and 6) with less agreement as the plastic strain increases.

Figure 18.7 shows the results from test case 3, where the temperature was set to 300 K and the
loading rate was 10 m/s. The figure shows that there is very close agreement between Sierra and
Abaqus for all of the tension loaded elements (elements 1, 2, and 3). However, there is some minor
disagreement between the two sets at very low plastic strains. And again, as expected the tension
loaded elements all fail at the same equivalent plastic strain since they all use the same failure data.
Also, the agreement between Sierra and Abaqus is very close for the shear dominated loading
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Figure 18.5: Comparison of results from test case 1.

1

elements (elements 4, 5, and 6) with less agreement as the plastic strain increases.

Figure 18.8 shows the results from test case 4, where the temperature was set to 700 K and the
loading rate was 10 m/s. Again, the figure shows that there is good agreement between Sierra
and Abaqus for all of the tension loaded elements (elements 1, 2, and 3). However, there is more
discrepancy between the two sets of data at low plastic strains. And again, as expected the tension
loaded elements all fail at the same equivalent plastic strain since they all use the same failure data.
Also, the agreement between Sierra and Abaqus is very close for the shear dominated loading
elements (elements 4, 5, and 6) with less agreement as the plastic strain increases.

Figure 18.9 shows the results from test case 5, the test case that includes adiabatic heating and the
Hill ratios are all set to 1.0 (which is equivalent to the Mises surface). For this case the temperature
was set to 300 K and the loading rate was 1 m/s. Because the Hill ratios are all the same the results
from the three tension elements all lie right on top of each other in the figure; likewise the results
from the three shear elements all lie right on top of each other. The figure shows that there is very
good agreement between Sierra and Abaqus for all of the tension loaded elements (elements 1, 2,
and 3). As expected, the tension loaded elements all fail at the same equivalent plastic strain since
they all use the same failure data. The agreement between Sierra and Abaqus is very close for the
shear dominated loading elements (elements 4, 5, and 6) with less agreement as the plastic strain
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Figure 18.6: Comparison of results from test case 2.

The hydra plasticity model was verified by comparing the hydra plasticity model to a similar model
in Abaqus. Five sets of six single element tests that exercised a range of features in the hydra plas-
ticity model were used for the verification. Nearly perfect agreement between the hydra plasticity
model and the Abaqus model was found in the tensile loaded elements. At higher temperatures,
some minor differences between the two models was seen at low plastic strains. Good agreement
was found between the two models in the shear loaded elements; however, there are non-trivial
differences at larger strains. While every attempt was made to make the models in Sierra using
hydra plasticity and the models Abaqus/Explicit using the generalized plasticity model to be the
same there may be some differences in non-material model algorithms or options that would result
in discrepancies.

While the above tests are comprehensive, additional verification may benefit the model. Additional
verification should focus on the hydra plasticity model's ability to recovering the data input by the
hardening and failure functions under simple loading conditions.
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Test Case 4: 700 K, 10 m/s
Sierra Elem 1 XX

  Abaq us Elem 1 XX
- Sierra Elem 2 YY
  Abaqus Elem 2 YY

Sierra Elem 3 ZZ

  Abaqus Elern 3 ZZ
- Sierra Elem 4 XY
  Abaqus Elem 4 XY

Sierra Elem 5 ZX

  Abaqus Elem 5 ZX
Sierra Elem 6 YZ

  Abaqus Elern 6 YZ

f j-l-- '***"""14se 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 7 0 8 0.9 1 0 1 1

Equivalent Plastic Strain in Element

Figure 18.8: Comparison of results from test case 4.
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Test Case 5: Adiabatic Heating, Rij = 1

•

Sierra Elern 1 XX

  Abaqus Dem 1 XX

- Sierra Elem 2 YY

  Abaqus Elem 2 YY

Sierra Elem 3 ZZ

  Abaqus Elem 3 ZZ

- Sierra Elem 4 XY

  Abaqus Elem 4 XY

Sierra Elem 5 ZX

  Abaqus Elem 5 ZX

Sierra Elem 6 YZ

  Abaqus Elem 6 YZ

0.0 0.1 0 2 D..3 0.4 0.5 0.45 0.7 0.3 0 9 1 0

Equivalent Plastic Strain in Element

Figure 18.9: Comparison of results from test case 5.
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18.13 NLVE 3D Orthotropic Model

BEGIN PARAMETERS FOR MODEL NLVE 3D ORTHOTROPIC

#

# Elastic constants

#

YOUNGS MODULUS =

POISSONS RATIO =

SHEAR MODULUS =

BULK MODULUS =

LAMBDA =

TWO MU =

#

# Material coordinates system definition

#

COORDINATE SYSTEM

DIRECTION FOR ROTATION

ALPHA

SECOND DIRECTION FOR ROTATION

SECOND ALPHA

#

#

#

FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name

FICTITIOUS LOGA SCALE FACTOR = <real>fict loga_scale_factor

#

# In each of

# the RELAX

# 1 through

#

1PSI PRONY

2PSI PRONY

3PSI PRONY

4PSI PRONY

5PSI PRONY

RELAX TIME

<real>

<real>

<real>

<real>

<real>

<real>

E

v

G

K

À

2p

= <string> coordinate system_name

= <real> 11213

<real> al (degrees)

= <real> 1120

= <real> a2 (degrees)

the five "PRONY" command lines and in

TIME command line, the value of i can be from

30

<integer>i

<integer>i

<integer>i

<integer>i

<integer>i

<integer>i

<real>psil_i

<real>psi2_i

<real>psi3_i

<real>psi4_i

<real>psi5_i

<real>tau_i

REFERENCE TEMP = <real>tref

REFERENCE DENSITY = <real>rhoref

WLF C1 = <real>wlf_c1

WLF C2 = <real>wlf_c2

B SHIFT CONSTANT = <real>b_shift

SHIFT REF VALUE = <real>shift_ref

WWBETA 1PSI = <real>wwb_lpsi

WWTAU 1PSI = <real>wwt_lpsi

WWBETA 2PSI = <real>wwb_2psi

WWTAU 2PSI = <real>wwt_2psi

WWBETA 3PSI = <real>wwb_3psi

WWTAU 3PSI = <real>wwt_3psi
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WWBETA 4PSI = <real>wwb_4psi

WWTAU 4PSI = <real>wwt_4psi

WWBETA 5PSI = <real>wwb_5psi

WWTAU 5PSI = <real>wwt_5psi

DOUBLE INTEG FACTOR = <real>dble_int_fac

REF RUBBERY HCAPACITY = <real>hcapr

REF GLASSY HCAPACITY = <real>hcapg

GLASS TRANSITION TEM = <real>tg

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

GLASSY C11 = <real>cllg

RUBBERY C11 = <real>cllr

GLASSY C22 = <real>c22g

RUBBERY C22 = <real>c22r

GLASSY C33 = <real>c33g

RUBBERY C33 = <real>c33r

GLASSY C12 = <real>cl2g

RUBBERY C12 = <real>cl2r

GLASSY C13 = <real>cl3g

RUBBERY C13 = <real>cl3r

GLASSY C23 = <real>c23g

RUBBERY C23 = <real>c23r

GLASSY C44 = <real>c44g

RUBBERY C44 = <real>c44r

GLASSY C55 = <real>c55g

RUBBERY C55 = <real>c55r

GLASSY C66 = <real>c66g

RUBBERY C66 = <real>c66r

GLASSY CTE1 = <real>ctelg

RUBBERY CTE1 = <real>ctelr

GLASSY CTE2 = <real>cte2g

RUBBERY CTE2 = <real>cte2r

GLASSY CTE3 = <real>cte3g

RUBBERY CTE3 = <real>cte3r

LINEAR VISCO TEST = <real>lvt

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

T DERIV

GLASSY C11 =

RUBBERY C11

GLASSY C22 =

RUBBERY C22

GLASSY C33 =

RUBBERY C33

GLASSY C12 =

RUBBERY C12

GLASSY C13 =

RUBBERY C13

GLASSY C23 =

RUBBERY C23

GLASSY C44 =

RUBBERY C44

<real>dcllgdT

= <real>dcllrdT

<real>dc22gdT

= <real>dc22rdT

<real>dc33gdT

= <real>dc33rdT

<real>dcl2gdT

= <real>dcl2rdT

<real>dcl3gdT

= <real>dcl3rdT

<real>dc23gdT

= <real>dc23rdT

<real>dc44gdT

= <real>dc44rdT
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T

T

T

T

T

T

T

T

T

T

T

T

DERIV

DERIV

DERIV

DERIV

DERIV

DERIV

DERIV

DERIV

DERIV

DERIV

DERIV

GLASSY C55 = <real>dc55gdT

RUBBERY C55 = <real>dc55rdT

GLASSY C66 = <real>dc66gdT

RUBBERY C66 = <real>dc66rdT

GLASSY CTE1 = <real>dctelgdT

RUBBERY CTE1 = <real>dctelrdT

GLASSY CTE2 = <real>dcte2gdT

RUBBERY CTE2 = <real>dcte2rdT

GLASSY CTE3 = <real>dcte3gdT

RUBBERY CTE3 = <real>dcte3rdT

GLASSY HCAPACITY = <real>dhcapgdT

DERIV RUBBERY HCAPACITY = <real>dhcaprdT

REF PSIC = <real>psic_ref

T DERIV PSIC = <real>dpsicdT

T 2DERIV PSIC = <real>d2psicdT2

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

REF

REF

REF

REF

REF

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

EQ

PSIA

PSIA

PSIA

PSIA

PSIA

2T = <real>psitt

3T = <real>psittt

4T = <real>psitttt

XX 11

XX 22

XX 33

XX 12

XX 13

XX 23

XX 44

XX 55

XX 66

XXT 11

XXT 22

XXT 33

XXT 12

XXT 13

XXT 23

XXT 44

XXT 55

XXT 66

XT 1 =

XT 2 =

XT 3 =

XTT 1

XTT 2

XTT 3

= <real>psiXX11

= <real>psiXX22

= <real>psiXX33

= <real>psiXX12

= <real>psiXX13

= <real>psiXX23

= <real>psiXX44

= <real>psiXX55

= <real>psiXX66

= <real>psiXXTll

= <real>psiXXT22

= <real>psiXXT33

= <real>psiXXT12

= <real>psiXXT13

<real>psiXXT23

= <real>psiXXT44

= <real>psiXXT55

= <real>psiXXT66

<real>psiXT1

<real>psiXT2

<real>psiXT3

= <real>psiXTT1

= <real>psiXTT2

= <real>psiXTT3

11 = <real>psiAll

22 = <real>psiA22

33 = <real>psiA33

12 = <real>psiAl2

13 = <real>psiA13

199



REF PSIA 23 = <real>psiA23

REF PSIA 44 = <real>psiA44

REF PSIA 55 = <real>psiA55

REF PSIA 66 = <real>psiA66

T DERIV PSIA 11 = <real>dpsiAlldT

T DERIV PSIA 22 = <real>dpsiA22dT

T DERIV PSIA 33 = <real>dpsiA33dT

T DERIV PSIA 12 = <real>dpsiAl2dT

T DERIV PSIA 13 = <real>dpsiAl3dT

T DERIV PSIA 23 = <real>dpsiA23dT

T DERIV PSIA 44 = <real>dpsiA44dT

T DERIV PSIA 55 = <real>dpsiA55dT

T DERIV PSIA 66 = <real>dpsiA66dT

REF PSIB 1 = <real> psiBl

REF PSIB 2 = <real> psiB2

REF PSIB 3 = <real> psiB3

T DERIV

T DERIV

T DERIV

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

PSI

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

POT

PSIB

PSIB

PSIB

TT

TTT

TTTT

XT 1

XT 2

XT 3

XTT

XTT

XTT

XXT

XXT

XXT

XXT

XXT

XXT

XXT

XXT

XXT

1

2

3

1

2

3

11

22

33

12

13

23

44

55

66

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

= <real>

END [PARAMETERS FOR MODEL

dpsiBldT

dpsiB2dT

dpsiB3dT

psipotTT

psipotTTT

psipotTTTT

psipotXT1

psipotXT2

psipotXT3

psipotXTT1

psipotXTT2

psipotXTT3

psipotXXTll

psipotXXT22

psipotXXT33

psipotXXT12

psipotXXT13

psipotXXT23

psipotXXT44

psipotXXT55

psipotXXT66

NLVE_3D_ORTHOTROPIC]

The NLVE three-dimensional orthotropic model is a nonlinear viscoelastic orthotropic continuum
model that describes the behavior of fiber-reinforced polymer-matrix composites. In addition to
being able to model the linear elastic and linear viscoelastic behaviors of such composites, it also
can capture both "weak" and "strong" nonlinear viscoelastic effects such as stress dependence of
the creep compliance and viscoelastic yielding. This model can be used in both Presto and Adagio.

Because the NLVE model is still under active development and also because it has an extensive list
of command lines, we have not followed the typical approach in documenting this model.
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18.14 Honeycomb Model

BEGIN PARAMETERS FOR MODEL HONEYCOMB

# Elastic constants

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> A

TWO MU = <real> Zp

# Orthotropic response

MODULUS TTTT = <real> E°TTTT
MODULUS_LLLL = <real> E°LLLL
MODULUS_WWWW = <real> E°wwww
MODULUS_TTLL = <real> E°TTLL
MODULUS_TTWW = <real> E°TTWW
MODULUS_LLWW = <real> E°LLIVW
MODULUS_TLTL = <real> E°TLTL
MODULUS_LWLW = <real> E°LAVIN
MODULUS_WTWT = <real> E°WTWT

# Material orientation

TX = <real> ty

TY = <real> ty

TZ = <real> t,

LX = <real> 4
LY = <real> 4
LZ = <real> 4

# Yield behavior

YIELD_STRESS = <real> cr

A1 = <real> A1

B1 = <real> Bl

C1 = <real> C1

A2 = <real> A2

B2 = <real> B2

C2 = <real> C2

A3 = <real> A3

B3 = <real> B3

C3 = <real> C3

TS = <real> Ts
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LS = <real> L,

WS = <real> ws
TLS <real> TLs

LWS = <real> LW,

WTS

ESTL

=

=

<real>

<real>

WT,

ESTW = <real>

ESLW = <real>

ESLT = <real>

ESWT <real>

ESWL = <real>

MODULUS_FUNCTION

RATE_FUNCTION

T_FUNCTION

L_FUNCTION

W_FUNCTION

TL_FUNCTION

LW FUNCTION

WT_FUNCTION

TTP_FUNCTION

LLP_FUNCTION

WWP_FUNCTION

TLTLP_FUNCTION

LWLWP_FUNCTION

WTWTP_FUNCTION

TTLP_FUNCTION

TTWP_FUNCTION

END [PARAMETERS FOR

= <string>

= <string>

- <string>

= <string>

- <string>

= <string>

- <string>

= <string>

= <string>

= <string>

= <string>

= <string>

= <string>

= <string>

= <string>

= <string>

MODEL HONEYCOMB]

The honeycomb constitutive model is used to model the energy absorbing capabilities of aluminum
honeycomb. There are three orthogonal material directions for the model: T, L, and W. The t-
direction is generally considered as the "strong" direction, the W-direction is the "weak" direction,
and the L-direction has an intermediate strength. This convention, however, does not necessarily
need to be followed when defining material inputs.

&TT ‘ ETTTT ETTLL ETTWW o dTT

(i-LL ETTLL LILL". ELLWW o o dLL

C.TIVW

drTL

{

=
ETTWW
o

ELLWW
o

EWWWW
o

o
ETLTL

o dww

dTL
(18.104)

&LW o 0 ELWLW o dLW

erWT 0 o o o EWTWT_ dWT

Output variables available for this model are listed in Table 18.9.
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Table 18.9: State Variables for HONEYCOMB Model

Index Name Variable Description
1 CRUSH minimum volume ratio
2 EQDOT effective strain rate
3 RMULT rate multiplier
5 I TER iterations

6 EVOL volumetric strain
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18.15 Viscoplastic Foam

BEGIN PARAMETERS FOR MODEL VISCOPLASTIC_FOAM

# Elastic constants

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> A

TWO MU = <real>

FLOW RATE = <real> h

POWER EXPONENT = <real> n

BETA = <real> )13

PHI = <real> 00

SHEAR STRENGTH = <real> A0

SHEAR HARDENING = <real> Al

SHEAR EXPONENT = <real> A2

HYDRO STRENGTH = <real> Bo

HYDRO HARDENING = <real> B1

HYDRO EXPONENT = <real> B2

YOUNGS FUNCTION = <string> hE(9)

POISSONS FUNCTION = <string> hy(9)

SS FUNCTION = <string> hA0(0

SH FUNCTION = <string> hA1(0

HS FUNCTION = <string> hB0(9)

HH FUNCTION = <string> hB1(?)

RATE FUNCTION = <string> hh(9)

EXPONENT FUNCTION = <string> hn(9)

STIFFNESS FUNCTION = <string> A(0)

#Optional user-specified functions

SHEAR HARDENING FUNCTION = <string> aQ0 #Do not specify Ao, Alf A2
HYDRO HARDENING FUNCTION = <string> b(0 #Do not specify Bo, B1, B2

BETA FUNCTION = <string> p(0) #Do not specify p
END [PARAMETERS FOR MODEL VISCOPLASTIC_FOAM]

The viscoplastic foam model is used to model the rate (and temperature) dependent crushing of
foams [15]. It is based on an additive split of the rate of deformation into an elastic and plastic
portion

Dij = + (18.105)
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The stress in the material is due strictly to the elastic portion of the rate of deformation so that

o

ijkl
e (18.106)

where Ciikl are the components of the fourth-order, isotropic elasticity tensor. The stress rate is
arbitrary, as long as it is objective. Two objective stress rates are commonly used: the Jaumann
rate and the Green-McInnis rate. For problems with fixed principal axes of deformation, these two
rates give the same answers. For problems where the principal axes of deformation rotate during
deformation, the two rates can give different answers. Generally speaking, there is no reason to
pick one objective rate over another.

To describe the rate-dependent response, an over-stress-type yield function is used. Specifically,
the rate-independent foam plasticity yield function

- 2 p2
f = — — —

a2 b2

is rearranged such that,

where cr* is the effective stress given by

cr*

(18.107)

f = o- — a, (18.108)

a25-2 _p2.
b2

(18.109)

In (18.109), 5- is the von Mises effective stress (6- = sou) and p is the pressure resulting from

a stress decomposition of the form,

= sij — p6ij. (18.110)

Furthermore, a and b are state variables that are functions of the absolute temperature, 0, and
maximum solid volume fraction, 0, and are defined as3

a (0, 0) = Ao (0) + A1(0) 402 (18.111)

(18.112)

b (0, 0) = Bo (8) + B1 (9) OB2 . (18.113)

The temperature dependent material properties in the preceding relations are all defined as, Ao (0) =
AAA° (0) where Ao is the reference material parameter and hA0 (0) is the relative value as a function

3In addition to the given analytical expressions, a and b may be optionally specified as user defined functions of
the maximum solid volume fraction. In these cases, however, the temperature dependence is neglected.
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of temperature. In addition to the a and b state variables, the Young's modulus and Poisson's ratio
are also functions of the absolute temperature. The latter may be written as v (0) = vh„ (0) while
the former is also dependent on the maximum volume fraction of solid material and is given as
E (0, 0) = EhE (0) fE (0).

The maximum volume fraction of solid material, 0, is given by

0 = max -0 (t) (18.114)
t>o

where 0 (t) is the current volume fraction of solid material and is defined as,

(t) =  Oo 
exp (ET )

with 00 being the initial solid volurne fraction and sf, is

8,„) = I DPudt.

(18.115)

(18.116)

During inelastic deformation (f > 0), the corresponding rate of plastic deformation is given in a
Perzyna-type form as,

n(0)0_4:
exp (h (0)) (—

a 
— 1
)

gi j if f > 0
Dii) j =

0 if f < 0

(18.117)

where h (0) and n(0) are the flow rate and power exponent respectively. The inelastic flow direction,
gij, is given as a linear combination of the associated (with respect to (18.107)), 4, and radial,

gi = (1 — 18)4 + (18.118)

The directions ei and gri j are given by

a f 3 2 ris..
do-ij = a2 Sij 3b2P"-'/J

I a kt I 1 4Si j — ip5iil

Crij Crij
—  

10-1c1I Al0-1c1Crkl

respectively. In this model, the flow rule weight, may be specified as either a constant value or
as a function of the maximum solid volume fraction (fl = (0)).

In the above command blocks:
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• Since the model requires functions to describe the temperature dependence of the elastic
modulus and Poisson's ratio, it is recommended that one inputs these properties at some
reference temperature. However, any two of the elastic constants can be used for input. Con-
sult the User's Guide chapter on Material Models for more information on elastic constants
input.

• The reference value for the flow rate, h, is defined with the FLOW RATE command line.

• The reference value of the over-stress exponent, n, is defined with the POWER EXP ONENT
command line.

• The user-defined scalar scaling between associated and radial flow, /3, is defined with the
BETA command line.

• The initial volume fraction of solid material, 00, is defined with the P H I command line.

• The reference value for the shear strength, Ao, is defined with the s HEAR S TRENGTH com-
mand line.

• The reference value for the shear hardening modulus, A1, is defined with the SHEAR
HARDENING command line.

• The shear hardening exponent, A2, is defined with the SHEAR EXP ONENT comrnand line.

• The reference value for the hydrostatic strength, Bo, is defined with the HYDRO S TRENGTH
command line.

• The reference value for the hydrostatic hardening modulus, B1, is defined with the HYDRO
HARDENING command line.

• The hydrostatic hardening exponent, B2, is defined with the HYDRO EXPONENT command
line.

• The user-defined and normalized function that gives the elastic modulus as a function of
temperature, hE(0), is defined with the YOUNGS FUNCT ION command line.

• The user-defined and normalized function that gives the Poisson's ratio as a function of
temperature, MO), is defined with the POI S SONS FUNCT ION command line.

• The user-defined and normalized function that gives the shear strength as a function of tem-
perature, hA0(9), is defined with the s s FUNCT ION command line.

• The user-defined and normalized function that gives the shear hardening modulus as a func-
tion of temperature, hAi(0), is defined with the SH FUNCT ION command line.

• The user-defined and normalized function that gives the hydrostatic strength as a function of
temperature, hB0(0), is defined with the HS FUNCT ION command line.

• The user-defined and normalized function that gives the hydrostatic hardening modulus as a
function of temperature, hBi(0), is defined with the HH FUNCT I ON command line.
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• The user-defined and normalized function that gives the flow rate as a function of tempera-
ture, hh(0), is defined with the RATE FUNCTION command line.

• The user-defined and normalized function that gives the over-stress exponent as a function
of temperature, 109), is defined with the EXPONENT FUNCTION command line.

• The user-defined and normalized function that gives the elastic modulus as a function of
maximum solid volume fraction, fE(0), is defined with the STIFFNESS FUNCTION com-
mand line.

• The optional user-defined function that gives the shear strength as a function of the maxi-
mum solid volume fraction, a (0), is defined with the SHEAR HARDENING FUNCTION Com-
mand line. Note, if this function is defined the SHEAR STRENGTH, SHEAR HARDENING, and
SHEAR EXPONENT values should not be specified.

• The optional user-defended function that gives the hydrostatic strength as a function of the
maximum solid volume fraction, b (0), is defined with the HYDRO HARDENING FUNCTION
command line. Note, if this function is defined the HYDRO STRENGTH, HYDRO HARDENING,
and HYDRO EXPONENT values should not be specified.

• The optional user-defined function that gives the scaling between associated and radial flow
as a function of maximum solid volume fraction, /3(0), is defined with the BETA FUNCT ION
command line. Note, if this function is defined the BETA value should not be specified.

Output variables available for this model are listed in Table 18.10.

Table 18.10: State Variables for VISCOPLASTIC FOAM Model 18.15

Name Description
ITER number of sub-increments
EPVOL inelastic volumetric strain, Erv'
EDOT effective inelastic strain rate, kP
PHI volume fraction of solid material, 0
FA shear strength, a
FB hydrostatic strength, b
S T I F elastic stiffness as a function of 0
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18.16 Foam Damage

BEGIN PARAMETERS FOR MODEL FOAM_DAMAGE

# Elastic constants

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> A

TWO MU = <real> 2µ

# Yield behavior

PHI = <real> 00

FLOW RATE = <real> h

POWER EXPONENT = <real> n

TENSILE STRENGTH = <real> c

ADAM = <real> adam

BDAM = <real> bdam

# Functions

YOUNGS FUNCTION = <string> hE( 0
POISSONS FUNCTION = <string> hy(B)

RATE FUNCTION = <string> kr,(9)

EXPONENT FUNCTION = <string> kj0)

SHEAR HARDENING FUNCTION = <string> a(0)

HYDRO HARDENING FUNCTION = <string> b(0)

BETA FUNCTION = <string> AO)

YOUNGS PHI FUNCTION = <string> fE(0)

POISSONS PHI FUNCTION = <string> fA0)

DAMAGE FUNCTION = <string> tv(Edam)

END [PARAMETERS FOR FOAM_DAMAGE]

The foam damage model was developed at Sandia National Laboratories to model the behavior of
rigid polyurethane foams under a variety of loading conditions [16]. For instance, temperature,
rate, and tension-compression dependencies are all built into this model. This model, leverages
previous efforts and experience with other foam models. Consult the Sierra/SM User Manual
chapter on Material Models for additional details. Like those past efforts, this model utilizes an
additive decomposition of the strain rates into elastic and inelastic parts,

D = + (18.121)

It is also assumed that the elastic response is linear and isotropic such that the stress rate for
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isothermal conditions is given by the following equation

0-ij= ijklDjd — ijkl (Dkl 1)iknl) (18.122)

with Cijkl being the fourth-order, isotropic elasticity tensor. The specific stress rate considered is
arbitrary as long as it is object. Two common rates satisfying that constraint are the Jaumann and
Green-McInnis rates.

The initial yield surface is assumed to be an ellipsoid about the hydrostat and is described by the
function

CT
- p2 2

f =
a2 b2 
+ — —1 = (18.123)

where a and b are state variables that define the current deviatoric and volumetric strengths, re-
spectively, of the foam. The von Mises effective stress, Cr is a scalar measure of the deviatoric
stress given by

= \/3-2siisii,
while p is the pressure, or mean stress, and is defined as

1
P = 319-kk,

(18.124)

(18.125)

with crii and sij being the components of the Cauchy and deviatoric stress. This latter tensor may
be written as,

sij = p8ij,

where Sii are the components of the identity tensor - Si j= 1 if i = j, = 0 if i j.

For this model, the yield function (18.123) is re-written as

(18.126)

f = a-* — a = 0 (18.127)

with the effective stress, o-*, being a function of the von Mises effective stress, 5-, and the pressure,
p, as follows

a2
0-- 2 ±

b2
(18.128)
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Next, using a Perzyna-type formulation, the following expression for the inelastic strain rate, D11),
is developed

gij = eh
* 
— gij if —

Gr* 
— 1 > 0

= a a
*

0 if
 
— 1 < 0

a

(18.129)

where gij are the components of a symmetric, second-order tensor that defines the orientation of
the inelastic flow. This type of model is sometimes referred to as an over-stress model because the
inelastic rate is a function of the over-stress - the distance outside the yield surface. For associated
flow, gij is simply normal to the yield surface and is given by

3 2

sii 6ij 
3 2
a2 ski + 3b2 

pSkl

(18.130)

When lower density foams are subjected to a simple load path like uniaxial compression, the in-
elastic flow direction at moderate strains appears nearly uniaxial. In other words, the flow direction
is given by the normalized stress tensor as follows

r Crii
gi =

j 0-01

(18.131)

This type of flow is called radial flow. The foam damage model has another parameter, 13, which
allows for the flow direction to be prescribed as a linear combination of associated and radial flow
such that,

(1 — /3)4 + grii

gij = (1 — )3) glad +flgid
(18.132)

Rigid polyurethane foams have little ductility when they are subjected to tensile stress. For this
loading case, the materials behave more like brittle materials and even for uniaxial compression
the foams often show cracking at large strains.

The damage surfaces for the foam damage model are simply three orthogonal planes with the
normals given by the positive principal stress axes. The damage surfaces are given by the following
equation

faa,,, c — w) , ; i = 1, 2, 3 (18.133)
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where Cr' is a principal stress, c is the initial tensile strength which is a material parameter, and w
is a scalar measure of the damage. As damage occurs, the damage surface will collapse toward
the origin and the foam will lose tensile strength. The foam will, however, still have compressive
strength.

Damage is taken to be a positive, monotonically increasing function of the damage strain, Edam,
and the damage strain is a function of the maximum principal strain, Emax, and the plastic volume
strain, 4, such that

w= W (Edam) ; Edam = adamemax bdamEPv (18.134)

with the material parameters adam and bdam controlling the rate at which damage is generated in
tension and compression, respectively. The model does not allow healing, so the damage never
decreases even if the damage strain decreases.

To fully capture temperature, strain rate, and lock-up effects, several material parameters are de-
fined as functions of temperature, 0, and/or some measure of the amount of compaction, e.g. the
maximum volume fraction of the solid material obtained during any prior loading, 0. For instance,

E (0, 0) = E hE (0) fE (0) ,

(18.135)

v (0, = v hv (0) fy (0) ,

and the natural logarithm of the reference flow rate, h, and the power law exponent, n are also
functions of temperature

h (0) = h hh (0)

(18.136)

n (0) = n hn (0) .

The current deviatoric and volumetric strengths are hardening functions of the maximum volume
fraction of the solid material obtained during any prior loading, 0, as is the parameter that defines
the fraction of associated and radial flow, )6. Therefore,

a = a (0) ; b = b (0)

= (0)
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Through the loading cycle, the maximum volume fraction of solid material is written as,

= max -O. (t) (18.138)
t>0

where -0 (t) is the current volume faction of solid material defined as

(t) =  
exp ( E

(18.139)

with 00 and Et' being the initial solid volume fraction and plastic volumetric strain, respectively.

The foam damage model, as presented, provides a phenomenological model with enough flexibility
to model the observed deformation and failure of rigid polyurethane foams.

• Consult the User's Guide chapter on Material Models for more inforrnation on elastic con-
stants input.

Output variables available for this model are listed in Table 18.11. For information about the foam
damage model, consult [16].

Table 18.11: State Variables for FOAM DAMAGE Model

Name Variable Description
I TER number of sub-increments taken in subroutine
EPVOL plastic volume strain
PHI maximum volume fraction of solid material
EQP S equivalent plastic strain
FA shear strength - a
FB hydrostatic strength - b
DAMAGE damage
EMAX maximum tensile strain
PWORK plastic work rate
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18.17 Thermo EP Power Model

Output variables available for this model are listed in Table 18.12.

Table 18.12: State Variables for THERMO EP POWER Model

Index Name Variable Description
1 EQP S equivalent plastic strain
2 RAD I U S radius of yield surface
3 BACK_S TRE S S_XX back stress - xx component
4 BACK S TRE S S YY back stress - yy component
5 BACK_S TRE S s_z z back stress - zz component
6 BACK_S TRE S S_XY back stress - xy component
7 BACK_STRE S S_YZ back stress - yz component

8 BACK_STRE S S_Z X back stress - zx component
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18.18 Thermo EP Power Weld Model

Output variables available for this model are listed in Table 18.13.

Table 18.13: State Variables for THERMO EP POWER WELD Model

Index Name Variable Description
EQP S equivalent plastic strain
RAD I U S radius of yield surface
BACK_S TRE S S_XX back stress - xx component
BACK S TRE S S YY back stress - yy component
BACK_S TRE S s_z z back stress - zz component
BACK_S TRE S S_XY back stress - xy component
BACK_STRE S S_YZ back stress - yz component
BACK_STRE S S_Z X back stress - zx component
WE LD_F LAG
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18.19 Universal Polymer Model

BEGIN PARAMETERS FOR MODEL UNIVERSAL_POLYMER

# Elastic constants

YOUNGS MODULUS = <real>

POISSONS RATIO = <real>

SHEAR MODULUS = <real>

BULK MODULUS = <real>

LAMBDA = <real>

TWO MU = <real>

WWBETA 1 = <real>

WWTAU 1 = <real>

WWBETA 2 = <real>

WWTAU 2 = <real>

SPECTRUM

SPECTRUM

LOG TIME

fir
Tr
fl2-
T27

START TIME = <real>

E

v

G

K

2µ

END TIME

INCREMENT

BULK GLASSY 0

BULK GLASSY 1

BULK GLASSY 2

BULK RUBBERY 0

BULK RUBBERY 1

BULK RUBBERY 2

VOLCTE

VOLCTE

VOLCTE

GLASSY

GLASSY

GLASSY

VOLCTE RUBBERY

VOLCTE RUBBERY

VOLCTE RUBBERY

SHEAR GLASSY 0

SHEAR GLASSY 1

SHEAR GLASSY 2

SHEAR RUBBERY

SHEAR RUBBERY

SHEAR RUBBERY

= <real>

= <real>

<real>

<real>

<real>

<real>

<real>

<real>

0 = <real>

1 = <real>

2 = <real>

0
I(01

IC 02

IC

K2;

cr o

aol

cro2

0 = aco

1 = ce,„

2 = ac„ 2

G
= <real> Gol

= <real> Go2

0 = <real> 0,0

1 = <real> G2

2 = <real> Go2„

<real>

<real>

<real>

<real>

tstart

tend

dt

REFERENCE TEMPERATURE = <real>

STRESS FREE TEMPERATURE = <real>

WLF C1 = <real> C1

WLF C2 = <real> C2

CLOCK_C1 = <real> CI

CLOCK_C2 = <real> C2

CLOCK_C3 = <real> C3

CLOCK_C4 = <real> C4

Tref

T5f
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CLOCK_C5 = <real> C5
FILLER VOL FRACTION = <real> Vf

# In each of the five "PRONY" command lines and in

# the RELAX TIME command line, the value of

# 1 through 30

RELAX TIME <integer>

F1 <integer> i

F2 <integer> i

i <real>

= <real>

= <real>

END [PARAMETERS FOR MODEL

T

fl i
f2 i

UNIVERSAL_POLYMER]

i can be from

The Universal Polymer model is a phenomenological, nonlinear viscoelastic material model for
analyzing stresses and strains in glass-forming materials such as filled and unfilled polymers (e.g.,
thermoplastics, thermosets) and amorphous inorganic glasses. It represents a simplification of the
Potential Energy Clock (PEC) nonlinear viscoelastic model [17, 18] which goes by the name NLVE
polymer model in the Sierra codes. The material model was developed to predict the life-cycle
behavior of encapsulated components and glass-to-metal seals in design and performance analyses.
It predicts a full range of behavior including "yieldine (i.e., accelerations in rates of relaxation
generated by deformations), stress relaxation, volume relaxation, creep and physical aging. The
model uses a material clock driven by temperature, volume and strain histories (approximating the
potential internal energy of NLVE material). The strain measure is obtained from the integration
of the rate of deformation tensor. As a special feature, it does allow the user to initiate an analysis
from a stress-free temperature, Tv-, that is different from the reference temperature, T„f, where the
material properties are defined.

The constitutive equation is

cr = [Kg (T) — Koo (T)] f fl (t* — s*) 
ds
 ds I

— [Kg (T) 45g (T) — Koo (T) (T)] (t* —
o

+ 2 [Gg (T) — Goo (T)] f f2 (t* —
dedev

ds
ds

—
dT

ds I
ds

[Koo (T) I — K (T) boo (T) (T — T sf)] I + 2G oo (T) E- dev

The strain variables in the model are

1
Il = tre = I : ; Edev = E — 3/1

(18.140)

(18.141)
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The glassy bulk modulus is the instantaneous, short time bulk modulus, and it is a function of
temperature

dK
Kg (T) = Kg„

f dT dT

g 
+ 
dKg 

(T T„f) = Kg5f + (T — Tsf) (18.142)

while the equilibrium bulk modulus is the equilibrium, long time bulk modulus, and is also a
function of temperature

K
Keo (T) = 

dT dT

oo

 
(T (T T„f) = Koosf + 

d 
— T sf)

The volumetric thermal expansion coefficients have similar forms

da da
a (T) = a

g"f dT 
+ (T — T f) = a

g sf dT 
+ —g (T — sf)

da daoo
ao„, (T) = a00ref + dT dT

 (T Tref) = aoosf +   (T — T sf)

while g(T) and Soo(T) are the volumetric thermal strains in (18.140)

(18.143)

(18.144)

1 dag 1 da co
Sg(T) = ag,

f 
+ —
2cT 

(T — Ts") ; 600(T) = aoo,f + 
, 

—
2 
—
dT 

— Tsf) (18.145)

The glassy and equilibrium shear moduli are similar, but they also have an /2 dependence

dG dG
Gg (T) = Gg„ 

dT

g 
f +  (T T

r 
+ G

g 
+
dGg 

ef) 

dG 
(T — Tsf ) + 

(212 
12

d1 f dT 

(18.146)

dG oo dG oo dGoo dG
Goo (T) = Gooref dT 

+  
dI

Tref) +  = Go oSf 
dT 

+  Tsf ) +  
dI 

12
2 2

The relaxation functions in the integrands, fi and f2, have similar forms. They can be represented
with stretched exponential functions, while in the code they are evaluated using Prony series ex-
pansions
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N

exp (—t/Ti)

N

fi(o=exp(-0-1,0/51) ; Flz=1
i=1 i=1

(18.147)
N N

f2 (t) = exp (— (t/T2r2) F2i exp (—Or) ; F 2i = 1
i= 1 i=1

The material clock is the fundamental feature of the model. The clock is defined by

dw
loga = —Ci

N
(18.148)t — s = ;fs a(w)

where

dT

C2 ± N

N Tref) + C 3[11(0= (T — — fl (t* s*)
s
ds — I f (t*

s
ds

(18.149)

dedev clEd
ev dsc4 duf(t* — s* , t* — u

10 .10 ds du

If the clock is represented by the WLF equation above Tg, we have

—Ci (T — Tref)
log = (18.150)a

C2 + (T — Tref)

Equating constants above T g we obtain

Cl = Ci ; C2 = C2 (1 C3ffooref) (18.151)

f (t) = exp (—t
Tv

(18.152)

Output variables available for this model are listed in Table 18.14.
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Table 18.14: State Variables for UNIVERSAL POLYMER Model

Name Variable Description
AEND

LOGA potential energy clock
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18.20 Other Undocumented Material Models

For a listing of other material models that exist in Sierra/SM See Table 18.15. Support for use of
these models is limited.

Table 18.15: Other Material Models Available, but Undocumented

Material Name Author
CDM EP Shawn English
UNIVERSAL CURING MODEL Kevin Long
THERMAL BATTERY SEPARATOR Kevin Long
JOHNSON COOK DAMAGE Bill Scherzinger
FROST ASHBY CREEP Bill Scherzinger
ELASTIC PLASTIC FAIL Bill Scherzinger
ELASTIC ORTHOTROPIC FAIL Shawn English
HAIL ICE Bill Scherzinger
ELASTO_VISCOPLASTIC Arthur Brown
ELASTIC_UQ_SHELL Mark Merewether
MLEP WILKINS FAIL Mike Neilsen
UCP_FAIL Mike Neilsen
SOLDER

SOLDER_DAMAGE

COULOMBMIXMODE Shawn English
EVG Jake Ostien
SPECTACULAR Kevin Long
EPHYDROGEN

HILL_PLASTICITY_DAMAGE Jake Ostien
CRYSTAL_PLASTIC David Littlewood
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Chapter 19

Cohesive Material Models

This chapter describes the theory and usage of cohesive models in development. There are typically
two different types of cohesive models — intrinsic and extrinsic. Intrinsic models are used for
cohesive surfaces that are known a priori and are included in the model from the beginning. These
models by definition produce zero traction for zero cohesive separation and have a loading region
before failure. Extrinsic models are used when cohesive surfaces are dynamically inserted based
on some material criteria. These models typically are initialized to produce an equilibrium traction
at zero separation based on the cohesive zone insertion criteria. Section 19.1 describes the intrinsic
cohesive zone models in development, whereas Section 19.2 describes the extrinsic models.
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19.1 Intrinsic models

19.2 Extrinsic models

19.2.1 Tvergaard-Hutchinson

This model is an extension of the trapezoidal traction-separation model proposed by Tvergaard
and Hutchinson [1] generalized to multiple dimensions. The generalization is performed by ap-
propriately scaling the normal and tangential components of the traction and separation into the
1D model depicted in Figure 19.1. In Figure 19.1, A, is the normalized final cohesive opening in
the effective space, /11 is the length of the initial loading branch of the model, A2 is the separation
length that begins the failure branch of the model, and Cr is the maximum effective traction of the
cohesive zone. These parameters have the following restrictions on their values:

0 < A1 < A2 < Ac = 1, 6- > O.

Finally, as shown in Figure 19.1, for A > Ai unloading may be assumed towards the origin.

Assuming a loading condition (A > 0, A > 0), the slope of the effective traction-separation model
is evaluated as follows

(3- 1 iL1 'l 9

is, = el- I A,

6-(1 — A)I(A(1 — /12)),

0,

and the effective traction is computed as f = 1' A.

The effective traction-separation model is extended to 3D by defining the following additional
values:

• The normal failure separation, Sc.,

Al A2 1.0 
A

Figure 19.1: The effective traction-separation model following [1].

226



• The tangential failure separation, 6

• The ratio of failure separations, r = - cn, - 6 16ct

• The normalized normal separation, /1„ = unl6a,

• The normalized tangential separations, Ati = 1416ct,i = 1, 2.

• The effective separation, A = + (4)2 + (4)2

Then, the traction is computed as

4 =41 r,

e =t /112 r,

tn =I' An.

The model is extended to the extrinsic behavior by computing an effective opening 5t that recovers
the initialization traction. There are two modes of initialization: 1) where the initial effective
traction is below the peak traction specified in the input file, and 2) where the initial effective
traction exceeds the peak traction in the input file. In the first case, the components of the effective
opening (A) are computed on the hardening branch of the cohesive model. In the second case,
the peak traction is reset to the initial effective traction and the components of the initial effective
opening are computed using the condition IN = /11. Evaluation of the extrinsic effective opening is
given by the following:

= (4,02 + (02 + (02,

er =max(er,d-),

• t i A I
= = 1, 2,

frr
=t n n

After initialization, the model is evaluated using

A = I(An + An)2 + + ;11)2 + (4 + 4)2 .

The model is specified in adagio by the following command block:

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

INIT TRACTION METHOD = IGNOREIADDIEXTRINSIC (IGNORE)

LAMBDA_1 = <real>

LAMBDA_2 = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

USE ELASTIC UNLOADING = NOIYES (YES)

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]
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The INIT TRACTION METHOD = EXTRINSIC I ADD command line relates only to the dynamic
insertion of cohesive zone elements through element death or XFEM.

19.2.2 Thouless-Parmigiani

This model is an extension of the Tvergaard-Hutchinson effective traction-separation model de-
scribed in Section 19.2.1, but the normal and tangential traction components are treated indepen-
dently. The model is specified in adagio by the following command block:

BEGIN PARAMETERS FOR MODEL THOULESS_PARMIGIANI

INIT TRACTION METHOD = IGNOREIADDIEXTRINSIC (IGNORE)

LAMBDA_l_N = <real>

LAMBDA_l_T = <real>

LAMBDA_2_N = <real>

LAMBDA_2_T = <real>

NORMAL LENGTH SCALE = <real>

PEAK NORMAL TRACTION = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK TANGENTIAL TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

USE ELASTIC UNLOADING = NOIYES (YES)

END [PARAMETERS FOR MODEL THOULESS_PARMIGIANI]
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Chapter 20

Other In-Development Capabilities

This chapter describes other miscellaneous capabilities that are still in development or have limited
testing.
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20.1 Initial Particle Conversion

BEGIN CONVERSION TO PARTICLES AT INITIALIZATION <string>name

BLOCK = <string list>block_names

SECTION = <string>section_name

END

The initial particle conversion capability is provided to facilitate the creation of particle meshes

for particle based methods—such as smooth particle hydrodynamics (SPH), reproducing kernel

particle method (RKPM), or peridynamics—from an initial mesh of solid elements (e.g., hexes).

At the beginning of the analysis the solid element blocks listed in block_names are converted to

spherical particles of the type defined in the particle section sect ion_name. It is important to

note that the particle section will thus supersede any section specified in the original solid element

block definition (consult [1] section on Element Block Parameters).

Note that elements may also be converted to particles via element death (consult [1] section on

Element Death); however, conversion at initialization should offer more robust creation of particle

meshes that are (a) compatible with the original mesh boundary conditions and (b) amenable to the

chosen particle formulation methodology.
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20.2 Shell Contact Lofting Factor

Warning: The shell contact lofting factor only works with Dash contact.

BEGIN SHELL SECTION <string>shell_section_name

# ... see the Elements chapter of [1]

CONTACT LOFTING FACTOR = <real>contact_lofting_factor

END [SHELL SECTION <string>shell_section_name]

The CONTACT LOFTING FACTOR line command is available in the SHELL SECTION command
block to set a lofting factor specifically for use in contact. This contact lofting factor is used in
place of the kinematic lofting factor for creation of the shell lofted geometry in contact. If no
contact lofting factor is set, the kinematic lofting factor is used for contact.

The contact lofting factor has no effect on the shell element kinematics, and the LOFTING FACTOR
and CONTACT LOFTING FACTOR line commands may be used in combination to independently
set the kinematic and contact lofting factors, respectively.
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20.3 Reaction Diffusion Solver

An experimental diffusion capability eventually intended for use in phase field fracture. Currently
in early development and not recommended for use.

BEGIN REACTION DIFFUSION rxndiffname

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

INITIAL VALUE = <real>value(1.0)

SOURCE COEFFICIENT = <real>source_coeff(1.0)

DIFFUSION COEFFICIENT = <real>diff_coeff(0.0)

REACTION COEFFICIENT = <real<rxn_coeff(1.0)

SOLVE AT INITIALIZATION = OFFION(OFF)

SOLVE INCREMENT = <integer>solv_incr(1)

SOLVE EXPLICIT = OFFION(OFF)

GRADIENT CONFIGURATION = MODELICURRENT(MODEL)

BEGIN PRESCRIBED FLUX

SURFACE = <string>surf_name

NODE SET = <string>node_set_name

FUNCTION = <string>func_name

END

BEGIN PRESCRIBED FIELD

SURFACE = <string>surf_name

NODE SET = <string>node_set_name

FUNCTION = <string>func name

END

END

BEGIN GRADIENT DAMAGE gradDam

BLOCK = <string>block_names

INCLUDE ALL BLOCKS

FORMULATION = LORENTZ1MIEHEICOSINE(LORENTZ)

INITIAL VALUE = <real>value(1.0)

SOURCE COEFFICIENT = <real>source_coeff(1.0)

DIFFUSION COEFFICIENT = <real>diff_coeff(0.0)

REACTION COEFFICIENT = <real<rxn_coeff(1.0)

SOLVE AT INITIALIZATION = OFFION(OFF)

SOLVE INCREMENT = <integer>solv_incr(1)

SOLVE EXPLICIT = OFFION(OFF)

SUBCYCLES = <int>num_sub(1)

GRADIENT CONFIGURATION = MODELICURRENT(MODEL)

BEGIN PRESCRIBED FIELD

SURFACE = <string>surf_name

NODE SET = <string>node_set_name

FUNCTION = <string>func_name

END

END
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20.4 Phase Field Fracture Material

An experimental fracture capability. Currently in early development and not recommended for use.

BEGIN MATERIAL <name>

BEGIN PARAMETERS FOR MODEL PHASE_FIELD_LINEAR_ELASTIC

END

END

BEGIN PFFRAC phasefieldfracname

FRACTURE LENGTH SCALE = <real>reaction_value

CONDITIONING COEFFICIENT = <real>diffusion_value

FRACTURE ENERGY = <real>forcing_value

END
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20.5 Discrete Element Method (DEM)

The discrete element method is a particle based element formulation. This method is in early
development, experimental, and currently not recommended for use.

BEGIN DEM OPTIONS

....

END

BEGIN DEM SECTION

....

END
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